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Overview 

The initial six months of this research grant consisted of two major efforts: 

extension of existing work on OFMspert, and initiation of research on tutoring principles 

and models for complex, dynamic system, in particular, applications in Goddard Space 

Flight Center (GSFC) ground control systems. This research builds on the work done 

under the previous GSFC contract (ending December 1987) and research supported by 

NASA Ames Research Center, NAG 2-413 (Everett Palmer, Technical Monitor). 

OFMspert Research 

At the commencement of this grant, the first phase of the Ally empirical evaluation 

was performed. Ally is the implementation of OFMspert with control properties and a 

particular operator interface. The experiment evaluated the effectiveness of a supervisory 

control team consisting of a human operator and Ally versus a control team consisting of 

two human operators. The experiment was carried out in the GT-MSOCC (Georgia Tech 

MultiSatellite Operations Control Center) domain, a Georgia Tech research tool consisting 

of a high fidelity implementation of the operator interface to MSOCC, a GSFC ground 

control system. 

The Ally experiment was one of the first of its kind: a rigorous empirical 

evaluation of the effectiveness and dynamics of a cooperative team of a human operator 

and an expert system. The Ally research comprised the doctoral dissertation for Major 

James B. Bushman (Air Force); the research was successfully defended in December 1988. 

The dissertation will be published this spring as a Center for Human-Machine Systems 

Research technical report. In addition, the research will be prepared for publication in 

several conference proceedings and two journal papers. Preliminary results of this 

research were presented at a colloquium in October a t  Goddard Space Flight Center and at 



the annual symposium on the Empirical Foundations of Information and Software 

Sciences (EFISS). Viewgraphs from the GSFC colloquium and EFISS presentations are 

contained in Appendix A. 

In another aspect of this work, Ms. Patricia M. Jones won the annual Human 

Factors Society award for the best student paper at the 1988 meeting in October. Her paper, 

contained in Appendix B, was based on her masters thesis, a n  extensive empirical 

evaluation of the intent inferencing capabilities of OFMspert. Appendix C contains a 

second paper describing OFMspert research and interaction that was presented at EFISS 

conference and published in the conference proceedings and as Center technical report. A 

more complete version of her work is in the review process for the International Journal of 

Man-Machine Studies. 

The final portion of OFMspert research conducted during this period was the port of 

the OFMspedAlly code from Smalltalk-80 to Allegro Common Lisp. For a variety of 

reasons the OFMsperVAlly system implemented in Smalltalk-80 was unstable and 

proving very difficult to extend in further research directions. As a result, considerable 

effort over the last 6 months was spent in converting OFMspedAlly from Smalltalk-80 to 

Allegro Common Lisp with PCL (Portable Common Loops) object extensions. The new 

OFMspert implementation will run on a variety of platforms including the Macintosh 11, 

where it was implemented, a Sun 3/60, and a NeXT machine. The conversion of this 

research, though time consuming, will allow the rapid extension of the work into new 

research directions. Copies of the Allegro Common Lisp code are available from the Dr. 

Christine Mitchell. 

Intelligent Tutoring for Space Systems 

. 

There are three aspects the tutoring research a t  Georgia Tech. The first is the 

conclusion of the ITSSO (Intelligent Tutoring System for Satellite Operators). The next 



few months should see the publication of the ITSSO technical report. ITSSO was an 

interesting piece of exploratory research. Contrary to expectations, ITSSO did not result in 

enhanced operator performance. The experiment compared subjects trained with ITSSO 

with a control group whose subjects did not receive explicit tutoring but were allowed to 

interact freely with the simulated system (GT-MSOCC) for the same amount of time as the 

ITTSO subjects spent training with the tutoring system. For a range of performance 

measures, ITSSO-trained subjects performed no better, and in some cases worse, than 

subjects who were not tutored but only 'played with the system. 

Several interesting points are suggested by this research. First, the results may 

have been biased by the restrictions of the experimental design used in this research. The 

experimental design restricted ITSSO interaction to  exactly the time allowed for the 

subjects in the control group to 'practice' with the system (about 5 hours). I t  may be the case 

that intelligent tutoring systems require more time than unstructured practice. Although 

the results looked negative in the context of this experiment, in actual systems a tutoring 

system that provide a broad and structured experience with a complex system would be 

worth the additional hours or days of training. Hence, one possibility suggested by the 

ITSSO experiment is the necessity for improved experimental design. 

A second consideration in understanding the ITTSO results is the ITSSO 

philosophy of training: the ITSSO design was based on a 'bottom-up' perspective. Subjects 

were introduced to individual 'scenarios', one task or problem at a time. A great deal of 

the training time was spent working exclusively on a single task, a decision at the heart of 

the ITSSO design. In the GT-MSOCC domain, as in most supervisory control systems, the 

operator typically has to handle several tasks concurrently. It may be that the ITSSO 

training reduced the subjects' abilities to  handle multiple competing tasks. The control 

group, however, interacted with the system using scenarios where there were frequently 

multiple tasks that needed to be monitored or executed--sessions more typical of the actual 

GT-MSOCC supervisory control functions. 
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The combination of the 'bottom up' tutoring decision and the restrictive 

experimental design in which ITSSO subjects were not allowed sufficient time in which to  

train in a multi-tasks environment may be the causes of the unexpected experimental 

results. Future research will examine these finding more closely. 

Two other tutoring projects were also undertaken during this past six months. One 

was the examination of the possibility of extending OFMspert to be both a tutor for novices 

as well as an assistant for experienced operators. A copy of a preliminary report is 

included in Appendix D. 

Finally, research is underway to assess each of the tutoring models and 

methodologies that  Etienne Wenger (Artificial Intelligence and Tutoring Systems: 

Computational and Cognitive Approaches to the Communication of Knowledge,Morgan 

Kaufman Publishers, Los Altos, CA, 1987) reviews in his recent text. The assessment will 

result in a technical report that will briefly describe each of the intelligent tutoring system 

(ITS) models, assess its potential contribution to tutoring operators in complex dynamic 

systems, such as NASA ground control systems, and illustrate its potential contribution in 

the context of the the GT-MSOCC domain. A preliminary draft of this work is provided in 

Appendix E. 
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Overview of Georgia Tech Activities 

* Operator Function Model (OFM) 

* GT-MSOCC (a research laboratory) 

* Model-Based Operator Workstations 

* Multi-Modal Operator Interaction 

* OFMspert (Operator Function Model Expert System) 

* Ally: OFMspert with Control Capabilities 

* .Intelligent Tutoring System for Satellite Operators 
ITSSO and OFMTutor 



TYPES OF APPLICATIONS 

C o m W , d v n a m i G  systems with costs or- 
associated with human error. 

--space 

--manufacturing 

--process control and distribution systems 

--military C2 

Human operator functions as a Supervisorv controller 

--monitors predominantly automated control systems 

--fine tunes in response to unexpected changes in predicted system 
behavior 

--fault detection, diagnosis, and compensation 



EXPERIMENTAL ENVIRONMENT 

Msocc: 
MULTISATELLITE OPERATIONS CONTROL CENTER 

-Actual system at NASA/GSFC 

- Coordinates use of shared computer and 
communications equipment 

- System is now manual, moving towards 
automation 

GT-MSOCC 

- Developed at Georgia Tech 

- Simulation of future automated MSOCC 
system 

- Discrete event, Real Time, Interactive 
si rn ulation 
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OVERVIEW OF GT-MSOCC RESEARCH 

d GT-MSOCC 

I n t roduct ion 
of Voice Input 

I I 
OFM of 

GT-MSOCC 

Interface 
Based on-OFM 
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GT-MSOCC OPERATOR RESPONSIBILITIES 

- SUPERVISE SPACECRAFT CONTACTS CURRENTLY 
BEING SUPPORTED 

- COMPENSATE FOR AUTOMATED SCHEDULE 
PROBLEMS 

- RESPOND TO REQUESTS FOR UNSCHEDULED 
SPACECRAFT CONTACTS 

- DECONFIGURE ALL MANUALLY CONFIGURED 
EQUIPMENT STRINGS 



Operator Function Model (OFM) 

* a mathematical tool to represent operator interaction with 

predominantly automated space ground control systems 
(cognitive task analysis for system analysis and design). 

* OFMs structure represents cognitive as well as physical operator 
tasks. 

* usefid for the design of operator workstations and displays (model- 
based iconic displays). 

e 

* useful for the design of an "intelligent" operator's associate (OFMspert 
and Ally). 

* usehl to represent the task knowledge in the design of an intelligent 
tutoring system (ITSSO and OFMTutor). 



Subfunction 3 

Figure 1. A Generic Operator Function Model 
0 

, 



OFM STRUCTURE 

OFM is a network with nodes represented as non- 
deterministic, finite-state automata. 

Higher level nodes represent operator goals; decomposition 
represents how operator coordinates control actions 
and system configuration so that acceptable overall 
system performance is reached. 

Next-state transition functions model system triggering 
. events 

\w/ ' Generic OFM network 



Figure 2. A Generic Operator Function Model 
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Primary Features of OFM-Based Interface 

DYNAMIC ICONS 

- Qualitative Representation 

- High Level View of System Functioning 

- Detailed View of Data Propagation 

COMPUTER WINDOWS 

- Alphanumeric, Overlapping Windows 

- Contents Determined by OFM 

- Placement Determined by OFM 

- 



TWO-MONITOR OFM-BASED INTERFACE 

PM n 
I- KEYBOARD 



0 
EXPERIMENTAL DESIGN 

10 SUBJECTS USED EACH INTERFACE 

12 EXPERIMENTAL SESSIONS (45 MINUTES EACH) 

- 5 TRAINING SESSIONS 

- 7 SESSIONS FOR DATA ANALYSIS 

INDEPENDENT MEASURES 

- DISPLAY CONDITION 

- SESSION 

- SUBJECT 

DEPENDENT MEASURES 

- FAULT COMPENSATION (4 MEASURES) 

- EQUIPMENT CONFIGURATION AND 
DECONFIGURATION (5 MEASURES) 

- OPERATOR ERROR (2 MEASURES) 

0 



Operator Performance Measures 

Time to fix system problems: 
--fix hardware failures. 
--fix each of 3 software failures. 
--compensate for automated schedule 

--deconfigure manually configured equipment 
problems. 

Number of operator errors: 
--operator caused schedule conflicts. 
-- u n n ece ssary e q u i p men t rep I ace m e n ts . 

Time to respond to ad hoc requests for 
equipment. 

Accuracy of response to ad hoc requests. 



MEAN SCORES PER SESSION 

MEASURES ICONNVINDOWS KEYBOARD VOICE 

Time to detect hardware failures 42.5s* 

Time to detect SW no flow 56.9s* 

Time to detect SW decreased flow 71.2s* 

Time to detect high error count 206.0s' 

Time to deconfigure 1 1  .Is* 

Time to compensate for 46.5s 
auto mated schedule problems 

Number of operator-caused .16* 
schedule conflicts 

56.4s 88.0s* 

31 2.4s 369.4s 

398.9 438.9s 

356.7s 391.7s 

22.6s 28.0s 

75.9s 82.9s 

.70 .93 



MEAN SCORES PER SESSION 

0 

MEASURES ICONMllNDOWS KEYBOARD VOICE 

Good Displays Called 

I # of Unnecessary Replacements .23' 1.13 

45.5 

1.14 

24.5' 

Bad Displays Called 2.5 1 .l' 

e 



THE AUDOPILOT VOICE INTERFACE 

0 Isolated word, single user recognition 

0 Template-matching algorithm 

0 Three background noise levels 

0 Hierarchical vocabularies 

Up to 64 words per vocabulary 

0 Manufacturer-reported 98% accuracy 

Desk-top microphone 



N89-20694 

Use of Artificial Intelligence in 

Supervisory Control 

Human-machine mix where artificial intelligence, advanced 
automation, robotics, and human supervisory control are 

integrated in an effective human-machine system. 

Aaron Cohen & Jon D. Erickson 

Johnson Space Center 
Advanced Technology Advisory Committee 
NASA Technical Memorandum, April 1985 



Major Research Issue 

How to use artificial intelligence in system 
control? 

Replace human operator 

o r  

Amplify human operator's abilities to monitor 
the system and detect, diagnose and 

compensate for system failures? 



Objective of OFMspert Research 

Design an architecture to provide the human 
operator with an intelligent decision 

support system 

-- to augment, not replace, the versatile 

machi ne in tel I i g ence. 
human skills with skills provided by 

-- to compensate for known human 
l imitat ions. 

-- to complement individual human 
preferences 

Develop a theory of human-computer 
interaction in the control of complex, 
dynamic systems (normative, plausible) 

Build a model of the theory to demonstrate 
and empirically evaluate the proposed 
architecture (operator's associate) 



Requirements for an 

Intelligent Operator's Associate 

Operator's Associate must provide 
information and control abilities at 
the right time, of the right kind and 
with the ease of a human associate 

-- understanding 

-- control 

-- interface 

Understanding requires a model of the 
operator and system that can allow the OA 
to infer the operator's current 
control goals given knowledge of the 
control task, system functions, and current 
control state. 



OFMspert Characteristics 

OFMspert (operator Function Model Expert 
System) is an intelligent operator's 
associate based on the operator function 
model (Mitchell, 1987) 

OFMspert uses the Operator Function Model 
(OFM) to represent knowledge about the 
operator  

OFMspert uses the blackboard model of 
problem solving (Nii, 1986) to maintain a 
dynamic representation of operator goals, 
plans, tasks, and actions given previous 
operator actions and current system state 



Figure 1. A Generic Operator Function Model 



I Blackboard cont ro l  

clock 
euents 

list 

problems +, 
list 

euents 
list 

I Blackboard d a t a  structure I 

Figure 2. ACTIN'S Architecture 
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Blackboard Model of Interactions 

GOALS 

model 
derived 

PLANS 

model 
derived 

TASKS 

model 
derived 

ACTIONS 

data 
derived 



COMPONENTS OF THE BLACm0AR.D MODEL 

Blackboarddatastructure 

Contkins the set of partial and complete solutions known as 
the solution space. 

Divided into levels of information where each level 
represents a distinct level of abstraction in the solution 
space. 

The highest leuel o f  abstraction I 

The lowest lsuel of  abstraction I 

Blackboard data structure 



Controlled System 

GT-MSOCC 
VAX 11f780 
BRL 4.3 UNlX 
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Experimental Validation 

of OFMspert's Intent lnferencing 

- Compare a domain expert's interpretations 

of operator actions to OFMspert's 

interpretation of those actions. 

- Compare verbal protocols of subjects 

verbal izi n g t hei r i n ten t ion s for each 

act ion to 0 FM spert's i n t erpret at ions 

of those actions. 



Table 3. Experiment 1 : Average Percentage of Equivalent 
Interpretations between ACTIN and a Human Domain Expert. 

Ordered by rank. 

Configure 

Endpoint telemetry page requests 

Deconfigure 

Telemetry page requests 

Answer 

Reconfig ure 

Interior telemetry page requests 

Replace 

Mission schedule page requests 

MSOCC schedule page requests 

Equipment schedule page requests 

Events page request 

Pending page request 

100% 

100 

97.1 

96.3 

91.4 

91.2 

87.1 

75.3 

66.7 

50.3 

21.8 

17.7 

16.7 



Table 5. Experiment 2: Average Percentage of actions 

matched by OFMspert 

Con figure 

Deconfigure 

Answer 

Replace 

Equipment schedule page requests 

Mission schedule page requests 

Interior telemetry page requests 

Endpoint telemetry page requests 

MSOCC schedule page requests 

Telemetry page requests 

Reconf ig u re 

Events page request 

Pending page request 

100% 

100 

96.2 

94.8 

90.3 

85.7 

84.3 

76.5 

75.5 

70.2 

60.8 

53.9 

33.3 



Telem 

Endpoint 
Telem 

Interior 
Telem 

lui6ooc 
sciled 

Equip 
sched 

Mission 
sched 

Events 

Table 2. Experiment 1 : Proportions of Equivalent Interpretations 
between ACTIN and a Human Domain Expert 

Subject 

Pending 

Deconfig 

Reconfig 

Config 

Answer 

Significantly good match 
# Significantly poor match 



Table 4. Experiment 2: Proportions of Equivalent Interpretations 
between ACTIN and Verbal Reports 

414 

818 

11 /18  

013 

Telem 

Endpoint 
Telem 

Interior 
Telem 

r vKxc  
sched 

Equip 
sched 

Mission 
sched 

Events 

Pending 

Deconfig 

Reconfig 

Config 

Replace 

Answer 

25 /31  ' 

517 

711 5 

416 

Subject 
21  2 2  

31 /31  ' 

711 5 

515 ' 

23 /23  ' 

12 /12  

30142 ' I 40/58  ' I 

30130 ' 

618 

313 

26 /29  

12 /13  

33 /39  ' 1 26 /38  ' I 
15/19  ' I 26 /29  ' I 
36 /45  ' I 22/31  ' I 

' Significantly good match (B> b(0.025,n,0.5) 
# Significantly poor match (Be n-b(0.025,n,0.5) 
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a 

Ally Workstation 



0 

a 
321/19:14:58: Real Operation Resumed 

321/19:17:06: AE-QL is due down at 321/19:29:00 

321/19:18:55: TAC4 is not available for 3 minutes 

Figure 10. ExamDle of Allv's User Interface 
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Mean Time to Compensate for Hardware Failure by Session 
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Mean Time to Compensate for Software Type 1 Failures by Session 
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Mean Time to Compensate for Schedule Conflicts by Session 

I 
I I I I I I 

1 2 3 4 5 0 
Session 



Mean Number of Correct Responses to Support Requests by Session 

3.0 

2.8 

2.6 

2.4 

2.2 

2.0 I I I I 

1 2 3 4 

Session 

Human Associatc 
_O_ ALLY Associate 



Mean Time to Compensate for Hardware Failure by Session 
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Mean Time to Compensate for Software Type 1 Failures by Session 
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Mean Time to Compensate for Software Type 2 Failures by Session 
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200 
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Mean Time to Compensate for Software Type 3 Failures by Session 

300 I 

_f_ Human Associate 
_O_ ALLY Associate 
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Session 



Mean Time to Respond to Support Requests by Session 

220 , 
200 

160 
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Session 



Mean Time to Configure Unscheduled Support Contacts by Session 
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0 
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c - 
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Session 



Mean Time to Respond to Deconfigure Requests by Session 
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1 2 3 

Session 
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Mission Schedule 3 

SS 18:OS 
ERBE 19:02 
GEO 19:03 

L J 

Intelligent Tutoring System 
for Satellite Operators 
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A Task Model 



Root Node: Supervisory Control of GT-MSOCC 

F1: Control of Current Missions 

Type of Failure Replaceable NonReplaceable 

Hardware Failure s11 
No Data Relayed Sl2 

Half Normal Data S13 

Triple Normal Errors S14 

SE 

S16 

S17 

SIB 

F2: Configure to Meet Support Request 

F3: Compensate for Automated Schedule Failures 

F4: Manually Deconfigure a Mission 

Figure 3 A Task Model 
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COMPLEXITY AND PROBLEM 
SOLVING 

Three basic elements in problem solving 
situations: 

The World to be acted on, 

The Agent who acts on the world, 

The external representation of the world 
utilized by the problem solving agent. 

AGENT 

WORLD 

N 



0 

0 

0 

0 

WHAT MAKES 
PROBLEM SOLVING 

COMPLEX: 

DIMENSIONS OF COMPLEXITY 

Dynamism 

Number of parts and extensiveness of 
interconnections between parts 

Uncertainty 

Risk 

DOMAIN OF INTEREST: 
COMPLEX DYNAMIC SYSTEMS 

Human operator as a supervisory controller 

0 monitoring task 

0 troubleshooting task 



QUESTIONS TO BE ADDRESSED 

What are the specific skills with respect 
to the four dimensions of complexity that 
are necessary to carry out the tasks 
involved in a CDS? 

What are the goals of an ITS designed for a 
CDS? What do we want. the operator to 
learn? Are the goals attainable? 

What approaches in each module of an ITS 
seem appropriate to a CDS and why? How 
do we translate an approach in the context 
of a CDS? 

What about implementation issues and 
"do-ability"? How much of the CDS world 
should be represented in the ITS? 

How do we evaluate the ITS (if 
implemented) to test i f  the goals are 
attained? 



COMPONENTS OF AN 
INTELLIGENT TUTORIAL SYSTEM 

a Domain Expertise 

a Student Model 

e Pedagogical Expertise 

e Interface 

Figure 3. ACTIN'S Intent lnferencing Structure 



REVIEW OF APPROACHES 

Doma in Expertis e: 
a 

a 

a 

a 

a 

a 

e 
a 

a 

0 

Information-structure-oriented paradigm (SCHOLAR, 
1970) 

Hierarchical scripts (WHY, 1977) 

Finite state automata (METEOROLOGY, 1973) 

Multiple representations of procedural and 
declarative knowledge (SOPHIE I, 1975; RBT, 1986) 

Qualitative modelling (STEAMER, 1984) 

Probabilistic model (INTEGRATION, 1973) 

D-rules (MYCIN/GUIDON, 1979) 

Procedural networks (BUGGY, 1975) 

Generalized AND/OR graph (REPAIR theory, 1980) 

Problem-solving models: 

0 

0 Linguistics theory (SPADE, 1976) 

0 

0 

Active structural networks (FLOW, 1974) 

Dependency graphs (MACSYMA ADVISOR 1977) 

Intention- based know1 edge structure 
(PROUST, 1984) 

Operator function model (AHAB, 1987) 0 



STUDENT MODEL 

Differential model (WEST, 1976) 

Overlay model (WUSOR-II, 1977; GUIDON, 
1979) 

0 Buggy model (BUGGY, 1978; MENO-II; PROUST, 
1984) 

Limited bug model (AHAB, 1987) 

INTERFACE 

Textual (SCHOLAR, 1970; SOPHIE, 1975; WEST, 
1976; GUIDON, 1979; PROUST, 1984; etc) 

0 Graphical (ALGEBRALAND, 1983; STEAMER, 
1984; IMTS, 1986; RBT, 1986; AHAB, 1987) 



REVIEW OF APPROACHES (cont'd) 

Pedagogical Expertise: 

Socratic method (WHY, 1977) 

Reactive learning environment (SOPHIE I, 
1975; MACSYMA ADVISOR, 1977) 

Conceptual fidelity (STEAMER, 1984; AHAB, 
1987) 

Progression of 0-order qualitative models 
(QUEST, 1986) 

Curriculum Information Network (BIP, 1976) 

Exploratory learning (LOGO, 1980) 

Issues and examples paradigm (WEST, 1976) 

Increasingly complex microworlds paradigm 
(Fischer, et at., 1978) 

Expert-based coaching (WUSOR-I, 1976) 

Bite-sized architecture (SMITHTOWN, 1986) 

Layered curriculum and steering test concept (MHO, 
1987) 

Discourse management networks (MENO-TUTOR, 
1984) 

T-rules (GUIDON, 1979) 

ACT theory (GEOMETRY and LISP tutors, 1984) 



e 

OFMTutor 

- Intelligent tutoring system 
of complex dynamic systems 

for operators 

- Based on the Operator Function Model IM) 



BI ackboard m ode1 of I n te ract io n s 

GOALS 

model 
derived 

PLANS 

model 
derived 

I 
TASKS 

model 
derived 

ACTIONS 

data 
derived 



OFMTufor's Model of Expertise 

Model derived representative of 
Goals, Plans, and Tasks 



OFMTutor's Student Model 
Data derived representation of 

goals, plans, and tasks 
based on student's actions 



OFMTutor's Pedagogical Strategy 
and Diagnosis 

Guided discovery/coaching in context 
of system operation 

Differential modeling techniques that 
compare expert and student 

blackboard. models 

Expert Blackboard Model Student Blackboard Model 
I I I I 



8 
Work in Process 

* Design of a computer-based operator 
associate that evolves from tutor to 
assistant as the skills of the human 
operator change from novice to expert. 

* The refinement of the Ally interaction 
to allow cooperative problem solving 
and repair of hypothesis formation. 

* Evolution of a broader theory of 'good' 
architectures utilizing human and 
computer decision makers in 
interactive control. 



OFMTutor 's In ferface 
Sup p o rt s g rap h i ca I, i n s pec t a b I e 

representation of joint hypotheses 
(expert and student) 

Model of discourse enables 
conversational capabi I it ies 

and supports repair 

Dialog I 
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ABSTRArn 
T ~ E  paper desa&% a portion of the OFhlspert (Operator Function Model Expert Systemj research 

project. OFhlspen is an architecture for an intebgent operator's associate or assistant that can aid the 
human o p e m r  of a complex, dynamic system. Intelligent aiding requires both understanding and control. 
This paper focuses on the understanding (Le., intent inferencing) ability of the operator's associate. Under- 
standing or intent hferencing requires a model of the human operator; the usefulness of an intelligent aid 
depends dxectly on the fidelity and completeness of its underlying model. The model chosen for this 
research is the operator function model (OFM) (h.fitchell. 1987j. The OFM represents operator functions, 
subfunctions, tasks, and actions as a heterarchic-hierarchic network of finite state automata, where the arcs 
in the network are system triggering events. The OFhl provides the structure for intent inferencing in that 
operator functions and subfunctions correspond to likely operator goals and plans. A blackboard system 
similar to that of HASP (7% et al., 1982) is proposed as the implementation of intent inferencing function. 
This system postulates operator intentions based on current system state and attempts to interpret obsented 
operator actions in light of these hypothesized intentions. The OFhZspen system built for this research is 
tailored for the GT-hlSOCC (Georgia Tech Multisatellite Opcrxions Control Center) simulation. The GT- 
MSOCC OFMsper~ has been the subject of rigoms vali&tio;i audies (Jones, 1988) tha: demonstrate its 
validity as ar. intent infer, pncer. 
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IhTTRODUCTION 

Computational representations and models have been constructed for "understanding" human 

behavior in many applications; e.g., understanding natural language (Winogad. 1972) and understanding 

stones (Schank and Abelson, 1977). Artificial inteuigence has developed many representational formal- 

isms and control strategies that are intended to mimic "intelligent" behavior (cf Cohen and Feigenbaum, 

1982). In the field of human-machine systems research. AI techniques offer powerful methodologies for 

understanding human behavior in the context of human-machine interaction. 

Our particular concern is with human-machine interaction in the conrol of complex dynamic systems 

(e& nuclear power plants). Such systems are highly automated, thus, the human operator acts as a super- 

visory controller (Sheridan and Johannsen, 1976; Rasmussen, 1986; Wickens, 1983). Supervisory control 

typically consists of routine monitoring and fine-tuning of system parameters. However, in the event of 

abnormal or emergency situations, the human operator is expected to detect, diagnose, and compensate for 

system failures. The ability of a supervisory conwller to cope with such situations can be severely limited 

Wickens (1984) cites several problems with supen-isory control: an increased monitoring load; a "false 

sense of security" whereby the operator trusts the automarion to such an extent that any human intervention 

or checking seems unnecessary; and "out-of-the-loop famiharity" that implies a reduced ability to cope with 

non-routine situatians. 

An important question then becomes how to improve system performance and safety in supervisor). 

control. The answer is not to automate the hum= o x  of the system; today's technology cannot match the 

human's abi!in. u) cope with uncertain and not.:: situations (Chambers and Nagel, 1985). Rather, 

ailtomated systems must supwon the human operata: Given that the human \h?lI remain an h i e m  part of 

a complex system, a potential approach to advanced auiomation is that of "amplifying" rather than automat- 

ing human skills (A'oods, 1986). 

The OFMspert (Operator Function Model Expzrt System) project is an effort to develop a theory of 

humancomputer interaction in supervisory contro:. OFMspen itself is a generic architecture for a 

computer-based operator's associate. The operator's asmiae (and similarly, the Pilot's Associate (Rouse 0 
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et ai. 19S7; Chambers and Nagel, 1985)) represents a design philosophy that allows the human to remain in 
0 

control of a complex system. The computer-based associate is a subordinate to which the human operalor 

can delegate control activities. The associate also actively monitors system state and operator actions in 

order to timely, context-sensitive advice, reminders. and suggestions. The intent is to provide intelligent 

support for the human operator. 

The intelligence and utility of the Operator’s associate rest on its abilities to understand the operator’s 

current intentions in order to provide context-sensitive advice and assume responsibility pven for portions 

of the control task. Models of human-machine interaction offer a variety of h e w o r k s  for understandmg 

human behavior (ie., inferring intentions) in the control of a complex dynamic system (see Jones and 

Mtchell, 1987, and Jones, 1988, for a review). Knowledge-based problem solving strategies are tools for 

implementing and reasoning with the knowledge represented in the human-machine interaction model. 

OFMspen combines a particular human-machine interaction model (the operator function model (OFM) 

(M.itchell, 1987)) and knowledge-based problem solving approach (the blackboard model of problem solv-. 

ing (Nii, 1986)) to provide the understanding capability necessary for an effective operator’s associate 

(Rubin, et al., 1987). In the next sections, the OFhl and the blackboard model of problem solving are 

described. Next, ACTIN (Actions Interpreter), the intent inferencing component of OFh?spen, is discussed, 

along with a detailcd example of how ACI IB  infers operator intentions dynamically. Finally, experimental 

results that validate ACTIN’S intent inferencing ability are considered. 

THE OPEX4TOR FLiTCIlOK MODEL 

The operator function model (On:, , \brchell, 1987) provides a flexible framework for represcilting 

operator functions in the control of a com?iex dynamic system. The OFT4 represents how an ywrator 

might organize and coordinate system control functions. Mathematically, the OFM is a hierarchic- 

hetemhic network of finite-stzte automata. Network nodes represent operator activities as operator func- 

tions, subfunctions, tasks, and actions. Operator functions are organized hierarchically as subfunctions, 

tasks, and actions. Each level in the network may be a heterarchy, i.e., a collection of activities that may be 0 
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performed concurrently. kcwork arcs represent system migeering events or the results of operator actions 

that initiate or terminate operator activities. In this way, the OFhl accounts for coordinauon of multiple 

activities and dynamic focus of attention. 

Historically. the OFM is related to the discrete control modeling methodology m e r ,  1985; 

Mitchell and Miller, 1986). The OFM is distinguished by its modeling of both manual and cognitive opera- 

tor actions in the context of system mggering events. Manual actions are system reconfiguration com- 

mands. Cognitive actions include information gathering and decision making that are typically supported 

by mformation requests. 

The OFM is a prescriptive model of human performance in supervisory conrrol. Given system 

aiggering events. it defines the functions, subfunctions, tasks, and actions on which the operator should 

focus. Used predictively, the O M  generates expectations of likely operator actions in the context of 

current system srate. Used inferentially, the OFM defines likely operator functions, subfunctions, and tasks 

that can be inferred based on operator actions and system state. Thus. the OFM for a particular domain 

defines the knowledge needed to perform intent inferencing. What is needed next is a problem solving stra- 

tegy to use this knowledge. 

a- 

THE BLXCI(B0AR.D MODEL OF PROBLEM SOLVING 

OFMspert’s intent inferencing component, called ACTIh’ (.4ctions Interpreter), uses the HASP 

blackboard model of problem sdving ( X i  et al, 1982; Mi, 1986). The HASP blackboard is one of the few 

artificial inwlligence systems t k x  exp!icitIy addresses real-time problem solving in dynarmc e,nvironments. 

The blackboard model of problem solving consists of three components: the blackmard, knowiedge 

sources, and blackboard control. The blackboard is a data structure on which the current best hypothesis of 

the solution is maintained and modified. The hypothesis is represented hierarchically, at various levels of 

abstraction, and evolves incrementally over time as new data become available or old data become 

obsolete. Domain-specific knowledge is organized as a collection of independent knowledge sources. 

Knowledge sources are responsible for posting and interpreting information on the blackboard. Blackboard 
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control applies knowledge sources opportunistically; that is, in either a top-down or bottom-up manncr, 
0 

depending on what is more appropriate in the current context. 

The blackboard model of problem solving is compatible with the knowledge represented in the Omf. 

Both models use a hierarchical representation. The blackboard knowledge sources provide a modularity 

that naturally represents much of the domain knowledge contained in the OFM arcs. The opportunistic 

control strategy offers the dynamic flexibility necessary for inferring intentions in real time. ACTIN corn- 

bines the OFM representation of domain knowledge and the blackboard model of problem solving to 

dynamically c o m t  and assess current operator intentions. 

ACTIONS INTEFPRE‘IER (ACTIN) 

ACTIN’S blackboard represents operator intentions as a hierarchy of goals, plans, tasks, and actions 

that correspond to the OFM’s hierarchy of functions, subfunctions, tasks. and actions. Goals are currently 

instantiated functions. plans are currently instantiated subfunctions, and so on. In some respects, A C I I K  is 

a process model thai uses the blackboard problem solving method to build a dynamic representation of 

current operator intentions based on the OFM’s Static knowledge (Wenger. 1987). 

0 

The general mechanism for the blackboard approach to intent inferencing is as follows. Given an 

OFhi, currently h>pxhes& goals, plans. and tasks (GPTs) or sometimes additional plans and tasks (PTs) 

for an existing goal are placed on the blackboard in response to system triggering evenrs. The blackhoard 

incorporates opemr- xtIons into the representation with opporrunistic reasorung. Thus, acuons can be 

immediately int=rpc’,d as supporting one or more current goals. plans, and tasks: and goals, plans, an3 

tasks can be inferred C‘L the basis of operator acuons. 

Construction howledge sources are responsible for building the representation of goals, plans, tasks, 

and actions. These knowledge sources can further be characterized as either model-driven or data-driven. 

Model-driven knoaledge sources are those that post GPT information on the blackboard in response to sys- 

tem mggering events as defined by the O M  Data-driven knowledge s o m s  are those that post operator 

actions and auempr to infer suppon for any current tasks on the blackboard. Data-driven knowledge 
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- 
sources may also poauiate GPT information on the basis of operator actions. Assessment knowledge 

sources are responsible for evaluating the extent to which operator acuom support currendy hypothesized 

goals, plans, and tasks. Assessments are always made in the context of a particular goal or plan which 

forms the context for possible advice or reminders. 

In order to illuspate ACTIN'S dynamic intent inferencing, it is !irst necessary to describe the applica- 

tion domain for which OUT OFMspert was built: the Georgia Tech Multisatellite Operations Control Center 

(GT-MSOCC). After describing GT-MSOCC and its O M ,  an example of ACTIN'S intent inferencing is 

presented. 

GT-MSOCC: APPLICATION DOMAIN 

GT-MSOCC is a real time, interactive simulation of MSOCC. a NASA ground control station for 

near-& satellites (Mtchell, 1987). MSOCC is a facility for capturing and processing data Sent by satel- 

lites (see F i p e  1). GT-MSOCC is a research domain designed to suppon theoretical and empirical 

research on human-oomputer interaction in the context of a complex dynamic system. It is a high fidelity 

simulation of the opesator interface to an actual NASA ground control system. For more detail, see 

Mitchell, 1987. 

a 

GT-MSOCC operator activities are defined by the GT-MSOCC OFM. At the highest level of the 

GT-MSOCC operam function model are majar cperator functions and the system events that cause the 

operator 10 transition among functions (see Figure 2). This level of descripuon represents operator goals in 

the context cf cmen: system state. The arcs define system events that @igger a refocus of attention or the 

addition of 2 !uncuor, to the current set of operator duties. 

The default high-level function is to control current missions. This involves the subfunctions of 

monitoring data transmission and hardware status, detection of data mmission problems, and compensa- 

tion for failed or depajed equipment. Each subfunction is further defined by a collection of tasks, which in 

turn are supported by -tor actions (system reconfiguration commands or display requests). 
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Figure 1. Multisatellite Operations Control Center (MSOCC) 

System triggering events cause the operator to focus attention on other high-level functions. An 

unscheduled support request causes the operator to shift to the "configure to meet support requests" func- 

tion. -4n error message h m  the automatic scheduler causes the operator to transition to the function to 

compensate for the automated schedule failure. A request LO decorhgure a mission causes the operator to 

shift to the function of deconfipuring a manual mission configuration. Finally, the operator may engage in 

long-term planning in the absence of other system mggenng events. Upon the termination of these other 

f czxons ,  the O p e m O i  resumes the default control of current missions function. Functions may be ter- 

n r x e d  by their successful compleuon crr the detcrminatio:. chat they cannot be completed. 

ACTIN'S INTENT I"CXXG WJTH GT-MSOCC 

In this section, a detailed example of ACTIN'S intent inferencing is provided in the context of GT- 

hlSOCC. Table 1 shows the organization of GT-MSOCC goals, plans, tasks, and actions, as defined by the 

GT-h1SOCC OFM. Given system triggering events, AC"'s  model-driven knowledge sources post the 
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1. 
2. 
3. 
4. 
5. 
6. Deconf ig uration completed. 
7. 

8. Terminate planning function. 

Error message received from the automatic scheduler. 
Compensation completed or unable to compensate. 
Unscheduled support request received by 'the operator. 
Reques! configured of unable to meet the request. 
Message received that a manually configured mission is completed. 

Operator summons schedule and/or mission template pages when no 
other triggering event takes place. 

Figure 2. GT-MSOCC Operator Functions 

appropriate goal, plan, and task (GPT) structures on the blackboard. When operator actions occur, 

ACTIN'S data-driven knowledge somes post actions on the blackboard and attempt to "connect" the 

actions to tasks which they support. Th~s "connection" between actions and tasks defines ACTIN'S intent 

inferencing capability. The knowledge of appropriate inferences of intent is contained in a data structure 

that matches actions to task types. Data-driven knowledge sources consult this structure to determine that 

task type(s) that a current opwator action can support. They then search the blackboard's task level of 

absuaction for those ~ p s ,  and connect the action to alI appropriate tasks. 

To illustrate ACTD;'s dynamic consnucuor. of opemor intentions, consider the following scenario 

from GT-MSOCC. The scenario is described L? terms of GT-MSOCC system events and operator actions. 

which then cause actikity on the blackboard. AC"'s intent inferencing results in statements written to a 

logfile. In the accompanying figures, the current blackboard structure is shown, along with ACTIN'S infer- 

ences of intent. 

1). The PM mission is automatically configured. ACTt"s model-driven knowledge sources post the 

goal to control the cunent mission (CCM) for PM. This goal is comprised of two plans: to monitor &ta 
0 
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Table 1. GT-hfSOCC Goals, Plans, Tasks, and Actions 

Goals Plans Tasks Actions 

Control current mission Monitor software (MSW) Check MOR (CMOR) d e m  
Check en*oints (CEND) ruplgwtviplcms lelem 

Monitor hardware (MHW) Check hardware (CHW) - (XM 

Manual Confqure Request  Check system constraints (CSC) Check current 
number of - 

m i s s i s  (CCNM) 
Check mission 
schedule (CMS) 

number of 
missions (CSNM) 

template (CMT) 

Wd 

m s c z  sched. msn scheda 

Check scheduled m s m  sched.pending 

Check mission requirements (CMR) Check mission msocc sched. msn scheds 

Identify candidate hardware (ICH) Find uirrent (FCUR) - 
Find unscheduled (YJSC) equip scheds. avails 

Answer question (ANO) Exewte answer(XAN) operator answer 
Execute configure (XCON) manual conf.g (MCON 

events 

Compensate lor Reconfgure (RCON) Find duration (FDUR) lelem. pending 
Schedule Failure Execute man. reconfio (MRCO) - .  

reconfigure(XRC0) events 
For each 

equipment: 
Find current (FCUR) - 

Find unscheduled (FUSC) equip scheds. avails 

I -  Manual Deconfigure Request (DCON) Execute man. deconfig(MDC0). 
damfigure (XDCO) wants 

l -  Troubleshoot (TBLS) Check endpoints (CEND) gw/rup:cms'vip teiem 
Check interior (CIN) na?./tac/apmodlan telem 

Find duration (FDUR) telem, pending 
Find amen1 (FCUR) - 

Find unscheduled (FUSC) 
Execute replace(XRPL) replace (RPL) 

equip scheh. avails 

transmission or software (MSW) and to monitor hardware status o. Each plan is composed of one or 

more tasks. The monitor software plan consists of two tasks: to check data flow at the MOR (CMOR) and 

to check data flow at endpoint equipment (CEND). The monitor hardware plan consists of the single task 

to check hardware status (CHW). ' I h s  entire GPT structure defines the conuol of current mission function 

prescribed by the OFM. When Phf is configured, ACI'N's knowledge sources remeve the control of 
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current mission GPT structure, fili in mission-specific information (e.g.. the name of this panicular mission 

is Phl), and post the structure on the blackboard The resulting blackboard is shown in Figure 3a 

2). Another mission (Geographic Explorer, or GEO) is configured In the same way the control of 

current mission GPT was posted for PM, a control of current mission GFT for GEO is also posted. The 

resulting blackboard is shown in Figure 3b. 

3). The operator requests the main telemetry page ("telem"). ACTIN'S data-driven knowledge 

sources determine that the current action type is "telem" and that actions of this type potentially suppn the 

tasks of checking the MOR (CMOR) and finding the duration (FDUR) of current missions. Upon examin- 

ing the tasks level of the blackboard, thc knowledge sources find that two eligible tasks are posted: the 

CMOR tasks for PM and GEO. Thus, the "telern" action is posted and connected to the CMOR tasks. The 

resulting blackboard is shown in Figure 3c. 

4). The operator requests the gateway telemetry page ("GwTelem"). ACTIN'S data-driven knowledge 

sources determine that the current action type is "GwTelem" and that actions of this type potentially 0 

Figure 3a. Blackboard aftex PM is configured. 
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Figure 3b. Blackboard after GEO is configured. 

Telem is interpreted as supporting CMOR for PM, CMOR for GEO 

Figure 3c. Blackboard after Telem page request. 

support the tasks of checking the endpoint equipment (CEND) of current missions. Upon examining thz 

tasks level of the blackboard, the knowledge sources find that fwo eligible tasks are posted: the CEXD 
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task fOi Phl and GEO. Thus, the “GwTelem” action is posted and connected to the CEYD tasks. The 

resulting blackboard is shown in Figure 3d. 

5) .  One of the components used by PM experiences a hardware failure. The component in this exam- 

ple is RUP2. Upon the Occurrence of this triggering event, A C T ”  model-driven knowledge sources post 

a plan to replace the failed component, along with the four associated tasks of finding a currently available 

replacement (FClJR), finding the duration of the mission (FDUR). finding an unscheduled replacement 

(FUSC), and executing the replace command (XRPL). The resulting blackboard is shown in Figure 3e. 

6). The operamr again requests the main telemexq page. This time A C T ”  knowledge sources 

determine that this action can support three tasks on the blackboard FDUR for RUP2 and CMOR for both 

PM and GEO. The resulting blackboard is shown in Figure 3f. 

7). The operator requests the schedule for RUPl (“RuplSched”). ACTIN’S data-driven knowledge 

sources determine that the current action type is ”RuplSched” and that actions of this type potentially sup 

port the task of finding unscheduled equipment (FUSC) for RUP components. Upon examining the tasks e . 

1 I 

GwTelern is interpreted as supporting CEND for PM, CEND for GEO 

Figure 3d. Blackboard after GwTelem page request. 
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I LTelern) I 

Figure 3e. Blackboard after RUP2 hardware failure. 

1 n n I 

Telern is interpreted as supporting CMOR for PM, CMOR for GEO, FDUR for RUP2 

Figure 3f. Blackboard after Telem page request. 

level of the blackboard, the knowledge sources find tha: one eligible task is posted: the FUSC task for 

RUE. Thus, the “RuplSched” action is posted and connected to the FUSC task associated wilh the RUE2 
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replace plan. The resulting blackboard is shown in Figure 3g. 

8). Finally, the operator requests the schedule for NASS. ACTK’s data-driven knowledge sources 

determine that this request potentially supporn hd ing  unscheduled NAS components (i.e.. the FUSC task 

associated with any NAS component). However. although a FUSC type task is posted, it is not associated 

with a NAS type component A C ”  is unable to interpret this request as supporting any current tasks. 

Thus, the “NasSSched” request action is posted, but not connected to any current tasks. Figure 3h illustrates 

the resulting blackbad. 

Several characteristics of ACTIN’S interpretation algorithm are notable. First, actions are immedi- 

ately connected to whatever appropriate tasks exist on the blackboard uf !he time the ucrions m e  posted. 

Connection links are not inferred after the action is posted. 

Another important feature is ACTIN’S property of maximal connectivity. That is, ACTIN interprets 

actions in the broadest possible context, assuming that the operator is extracting the maximum amount of 

information from the display pages requested In the exampie above, ACITN iferred that the second telem 0 

I n n I 

1 

RuplSched is interpreted as supporting FUSC for RUP2 

Figure 3g. Blackboard after Rupl Schedule request 
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~~ ~ 

Unable to connect Nas5Sched 

Figure 3h. Blackboard after Nas5 Schedule Request 

action supported all current CMOR tasks as well as the FDUR task for RUP2. Thus, the operator is "given 

the benefit of the doubt" in the evaluation of performance. 

The evaluation of operator performance is performed by knowledge sources that assess the degree u, 

which operator actions support current tasks (and by extension, plans and goals). ACTLY schedules assess- 

ments penodically in the context of particular &ods or plans. In the example above, ACTDI; schedules 

separate assessments for the control of current mission goals for PM and GEO, and the replace plan for 

RUP?. Assessments note the number of suppodtjng actions and the time at which those actions occurred. 

The assessments for PM and GEO would note tt;x the CMOR task is supported by two actions and t h e  

CEND task is supported by one action. R U E ' S  rep!xe plan assessment would state that one action sup 

ports the FDUR task and one action supports the FL'SC task. The results of these assessments are written 

to a logfile. 

To summarize, the proposed model for intent inferencing uses the OFM methodology to postulate 

operator functions, subfunctions, and tasks on the basis of current system state and observed operator 

actions. This model has been implemented using a blackboard architecture. This structure, of which the 
0 
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scenario described in this section is an example, defines the context for intent inferencing. 0 
The OFM and its implementation in A m T  is an example of "the middle ground" in theory con- 

struction in cognitive science @Idler, Polson, and Kintsch, 1984). The theory has well-defined structures 

and processes to "support both the instantiation of the theory as an executable computer program and quali- 

tative experimental studies of the theory" @Idler, Polson, and Kintsch, 1984, p. 13). In the next section the 

validation of the proposed model is explored. A two-stage framework for validation is proposed, and 

experimental results are briefly discussed. 

EXPERIMENTAL VALIDATIOK 

Validation of intent inferencing assures that the system is correctly inferring the intentions of the 

human operator. Within the context of the OFM srructlrre of intentions, hs means that the system infers 

support for the same tasks (and by extension, plans and goals) as the human, gwen the same set of operator 

actions. The "human" in this case can be a human domain expert performing a post hoc analysis, or the 

human operamr giving an (on-line) account of intentions. Thus, h e  proposed two-part m e w o r k  for the 

validation of intent mferencing is I.) comparison of expea and 0Fhfsp1-1 analyses; and 2.) comparison of 

concurrent verbal protocols and OFMspen analysis (see Jones, 1988, for more detail). 

The experimental validation of A C T " s  intent inferencing was conducted in two studies. In Experi- 

ment 1, a domain expert's interpretauons of operator data were compared to ACTIN'S interpretations of 

those same actions on an action-by-xuon basis. In Experiment 2, verbal protocols were collected from 

GT-MSOCC operators while they wex conrolling GT-hfSOCC. Statements of intentions for each action 

were compared to A C T "  interpretauon;. 

The results of these studies are discussed in detail in Jones (1988). Overall, the results showed that 

ACTIN'S intent inferencing ability compared favorably to inferences made by a domain expen and state- 

ments from verbal reports. 
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INTRODUCTION 

This paper proposes the design, implementation. and evaluation of OFMTutor, an Operator Function 

Model intelligent tutoring system. OFMTutor is intended to provide intelligent tutoring in the context of 

complex dynamic systems for which an operator function model (OFM) (Mitchell. 1987) can be con- 

saucted. The human operator’s role in such complex, dynamic, and highly automated systems is that of a 

supervisory controller whose primary responsibilities are routine monitoring and fine-tuning of system 

parameters and occasional compensation for system abnormalities (Sheridan and Johannsen, 1976; Wick- 

ens. 1984). 

The ability of a supervisory controller to cope with abnormal or emergency situations can be severely 

limited. Wickens (1984) cites several problems with supervisory control: an increased monitoring load; a 

“false sense of security“ whereby the operator trusts the automation to such an extent that any human inter- 

vention or checking seems unnecessary; and “out-of-the-loop familiarity” that implies a reduced ability to 

0 cope with non-routine situations. 

An important question then becomes how to improve system performance and safety in supervisory 

control. The answer is not to automate the human out of the system; today’s technology cannot match the 

human’s ability to cope with uncertain and novel situations (Chambers and Nagel, 1985). Rather, 

automated systems must support the human operator. 

One potentially useful form of support is the use of intelligent tutoring systems to teach the operator 

about the system and how to function within that system. In the next section, previous research on intelli- 

gent tutoring systems (ITS) is considered. Then the proposed design for OFMTutor is presented, and an 

experimental evaluation is described 

INTELLIGENT TUTORING SYSTEMS RESEARCH 

Intclligent tutoring systems are usually described in tcrms of three modules: an expcrt module that 

rcprcsents domain expcnisc; a student modcl bat rcpresents the studcnt’s performance rccord and 

presumed state of knowlcdgc; and a tutorial modulc that structures the intcnction betwecn thc tutor and thc 

-- 
\ A 
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student path et al.. 1988; Park et al., 1987; Wenger, 1987). Wenger (1987) considers the interface to be a 

fourth critical component for the successful implementation of a knowledge communication system. The 

following discussion of ITS research is divided into these broad categories of domain expertise r e p m u -  

tions. student modeling, pedagogical strategies, and interface design. Particular attention is paid to efforts 

that involve complex dynamic systems and/or complex problem solving tasks. 

Domain Expertise 

According to Wenger (1987). domain expertise forms the source of knowledge to be communicated 

and the standard for evaluating performance. Thus, the teaching goal is explicitly represented as this 

knowledge. The degree to which such domain expertise may be articulated is dependent upon the tran- 

sparency of the expert model's structure and its psychological plausibility. Thus, knowledge whose smc- 

ture is transparent to the student and whose organization and form are psychologically plausible is 

knowledge that can be relatively easily communicated to the student 

The SOPHIE project involved a series of tutoring programs for electronics troubleshooting (Burton 

et al., 1982; Wenger, 1987). The first version of SOPHIE (SOPHIE-I) demonstrates the efficiency and 

robusmess of an inference engine that uses multiple representations of domain knowledge: a simulation- 

based mathematical model of a circuit; procedural knowledge, organized as a collection of specialists, to act 

on the circuit model; and declarative knowledge organized as a semantic net of facts. SOPHIE-I was used 

as a supplemental laboratory in electronics troubleshooting instruction. SOPHIE-I1 extends SOPHIE-I to 

include an articulate troubleshooting expert to demonstrate strategies to the student The emphasis is on 

articulation of expertise in qualitative, causal terms. Finally, SOPHIE-I11 is mcant to support learner- 

centered activities, while providing powerful inference capabilities and supporting good explanations. 

SOPHIE-111's expertise is reprcscnted as two separate rnodulcs: a troubleshooting expert and an elcctronics 

expert. The architecture supports flexible, humanlike reasoning. 

Like SOPHIE, the Rccovcry Boilcr Tutor (RBT) (Woolf, 1986) supports a "reactive lcming cnviron- 

mcnt" which includcs a simulation of thc system of intcrcst (a kraft recovcry boilcr) and in which thc stu- 

dent is allowed to propose hypolhcscs that can bc cvaluatcd in real time. Also likc SOPHIE, RBT's domain 
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expertise concerns fault detection and diagnosis. The domain knowledge is. represented as a knowledge 

base of scenarios which describe preconditions. postconditions, and solutions for emergencies or operating 

conditions. 

The AHAB system represents the realization of a proposed ITS architecture for troubleshooting in 

complex dynamic systems (Fath, 1987; Fath et al., 1988). AHAE works in conjunction with PEQUOD, a 

marine steam powerplant simulation, to tutor students in troubleshooting strategies. AHAB's domain 

expertise (a "task model") prescribes troubleshooting actions based on current system state and represents 

psychologically plausible troubleshooting strategies (i.e., symptomatic and topographic search (Rasmussen, 

1986)). The task model is structured as an operator function model ( O m  (Mitchell, 1987). together with 

repsentations of declarative and procedural knowledge. 

AHAB's OFM provides the richest, most efficient structlne for domain expertise of all three systems 

reviewed here. It accounts for the coordination of strategy and dynamic focus of attention based on current 

system state. The OFM will be described in more detail in the section on the design of OFMTutor. 0 
Wenger discusses several issues in the representation of domain expertise. The representation should 

be complete; that is, the expertise should be a process model that has knowledge of the domain and also 

metaknowledge about how to use it. A pmess model must be able to solve problems that the student is 

expected to learn. 

Domain knowledge also needs to be relevant to the student. To this end, the process of warranting 

belief (i.e., justification of new knowledge with respect to previous knowledge and beliefs) is important It 

is crucial to motivate the concept to be taught with references to previous howledgc and bc 3 held by the 

student. This serves to justify new knowlcdge. 

Finally, a critical distinction in domain knowlcdge is whether it is compiled or articulate. Compiled 

knowledge is "automatic"; it is efficient and simple to use, but no longer possesses transparcncy and gen- 

erality. In particular, compiled knowledgc does not support the wmnting proccss. Articulate knowledge, 

on the olhcr hand, is ablc to support warnnting bclicf via organization in terms of dccomposition into 

primitives and configuration of primitivcs into a modcl and jurtificalion in tcrms of "first principlcs" (e.g.. 
0 
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causality, structure, functionality, teleology) and integration. 

Student Modeling 

Intelligent communication requires understanding of the mipient (Wenger, 1987). Thus. an intelli- 

gent tutoring system must possess some model of the student's c m n t  state of knowledge. In particular, an 

ITS uses student actions as data for interpretation and reconstruction of presumed states of knowledge. 

This requires the explicit consideration of a model of the student. The student model is needed by the tutor 

to guide the student's problem solving and to organize the leaming sequence (Wenger, 1987). 

In general, student modeling employs the technique of "differential modeling" -- that is, a comparison 

of expert and student performance and/or knowledge (Burton and Brown, 1982). Differential modeling 

requires that the expert and student models have the same structure for unambiguous comparisons to occur. 

Student modeling techniques may be broadly classified as overlay models or buggy models (Park et al., 

1987; Wenger, 1987). An overlay model assumes that the student's knowledge is a subset of expert 

knowledge; differences between the student and expert models are due to incompleteness of student 

knowledge. An example of an overlay model is Goldstein's genetic graph (Goldstein, 1982). Buggy 

models explicitly capture misconceptions as a collection of "bugs" (with or without an accompanying 

theory of the origin of these bugs); differences between the student and expert models are due to the 

student's "buggy" deviations (Burton, 1982; Johnson and Soloway, 1985). Buggy models are employed in 

BUGGY and its variants (Burton, 1982) and PROUST (Johnson and Soloway, 1985). 

Two particular studcnt modeling techniques are relevant for our discussion. The first is the idea of 

the "limited bug model" used in AHAB. AHAB's student model is very similar in structure to the task 

model, and thus the two can be compared via diITcrential modeling in the spirit of an overlay modcl. How- 

ever, AHAB also reprcscnts studcnt errors in terms of common or important gencral types of errors. Thus, 

emrs an: not exhaustivcly enumcrated a priori, but broad categories of errors can be used to idcntify the 

source of a diffcrcnce beiwcen Lhc student and task modcls. 

0 Thc second important Consideration is that of studcnt intentions. By utilizing an cxplicit account of 

plausible studcnt inlcntions (i.c.. goals and plans), pcrformance can be bcttcr undcrstood and thus 



I diagnosed properly and remedied in context (Genesereth, 1982). 

Plan recognition is a way of using information about the student's actions in dealing with the 

combinatorics in domains where the number of reasonable solutions and bugs is too large for 

the expert difference technique to work effectively. ... In addition to helping pinpoint the 

student's misconception, studying his plan is advantageous in that it enables the tutor to offer 

remedintion in the context of the student's problem and his approach to solving i t  @. 140) 

Similarly, Johnson and Soloway (1987) argue that "knowledge of intentions makes it possible to identify 

more bugs, as well as to understand their causes" (Johnson and Soloway, 1987, p. 50). Thus, it is desirable 

to account for plausible student intentions explicitly in the design of a student model. 

Pedagogical Strategies 

Pedagogical strategy defines the organization, sequencing, and form of the student-tutor interaction; 

it designates what to say and how and when to say it. Many intelligent tutoring systems employ the guided 

discovery or coaching method in which the student "learns by doing" with the assistance of a non-intrusive 

coach (Park et al., 1987; Burton and Brown, 1982; Wenger, 1987). The purpose of the coach is to "foster 

the learning inherent in the activity itself by pointing out existing learning opportunities and by transform- 

ing failures into learning experiences" (Wenger, 1987, p. 124). 

WEST is one of the earliest and most influential computer coaches. WEST assists students in play- 

ing the game "How the WEST was Won" (Burton and Brown, 1982). WEST uses the "issues and exam- 

ples" paradigm to find issues where a student is weak (via differential modeling) and then to provide exam- 

ples to illustrate bcuer moves. The guiding principle behind such a pedagogical strategy is to makc inter- 

ventions both relevant and memorable (Wcnger, 1987). WEST also employs a number of tutoring princi- 

ples that govern its intervcntion capabilitics (e.g., "Never tutor on two consecutivc movcs") (Burton and 

Brown, 1982). 
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SOPHIE and RBT both provide a "reactive learning environment" in which students can "play" with 

the simulation and observe the effects of their manipulations. STEAMER is an inspectable, interactive 

simulation of a propulsion plant that also allows students to manipulate system conditions and events (Hol- 

Ian et d., 1987). Fath (1987; Fath et d., 1988) explicitly considers the simulation of a complex system as 

part of the instructional media; the simulation is important in supporting students' understanding of the sys- 

tem (Le., building of accurate mental models (Hollan et al., 1987; Wenger, 1987)). Such simulations are 

important pedagogically in that they can serve as a form of continuous explanation to the student (Wenger, 

1987). 

An important facet of pedagogy is diagnosis of student misconceptions. Diagnosis updates the stu- 

dent model to reflect issues that need to be addressed in the interaction. Wenger (1987) distinguishes 

between three levels of diagnostic activities: behavioral, epistemic, and individual. Behavioral diagnosis is 

Concerned with behavior and the product of behavior. It is further characterized as non-inferential 

classification (an evaluation of student performance in terms of correcmess) or inferential reconstruction 

that is concerned with q e  problem solving process. The latter form of behavioral diagnosis is of concern 

here; inferential reconstruction deals with the use of plans and goals in reconstruction of problem solving 

behavior. Of especial importance are the PROUST and MACSYMA Advisor systems that explicitly 

represent student intenti ns. High-level goals are decomposed into plans and actions: diagnosis is a process 

that alternates "betweeh model-driven confirmation and dara-driven recognition of plans and goals" 

(Wenger, 1987, p. 374). 

An important issue in instructional systems in general is principled curriculum design. While the so- 

called "frame-based" computer-based insuuctional methods made an effort to take these considerations into 

account, much of the rcscach in intelligent tutoring systems does not make use of a theory of learning or 

instruction (Lesgold, 1988; Park et al., 1987). However. some efforts have been made to considcr curricula 

in ITS research. Wenger (1987) discusscs the concept of a bite-sized tutoring architecture (proposed by 

Bonar and his colleagucs) in which the system is organized around pedagogical issues called bites. Each 

bite focuscs on a particular aspcct of domain knowledge and also includes knowledge of its conccptual and 
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curricular relations to other bites, the student's mastery of that bite's subject matter, and the abilities to 

diagnose, generate problems. and generate instructional interventions. 

Lesgold (1988) points out that 

Where conventional instruction has an explicit curriculum but fails to have an explicit and 

complete representation of the knowledge that is to be taught, intelligent instructional systems 

have tended to represent the target knowledge explicitly but not to represent explicitly that 

body of knowledge that specifies the goal structure for insauction. the curriculum. (p. 117) 

Lesgold argues that an intelligent tutor must represent domain knowledge, curriculum knowledge, and 

knowledge of metaissues that afFect instruction. Domain knowledge includes procedural and declarative 

(Le., conceptual) knowledge. Curriculum knowledge is represented as a lattice of goals that are decom- 

posed progressively into subgoals. down to lessons that can be taught completely as a unit. This structure is 

based upon Gagne's (1971) learning hierarchy, in which the goal of instruction is progressively refined 

down to the level of individual lessons. The curriculum goal lattice is composed of a number of such goal 

hierarchies, each of which corresponds to a particular viewpoint of domain knowledge. Finally, the metais- 

sue layer relates to knowledge of student aptitude (e.g., "good at math") and is defined as the topmost goal 

nodes in the curriculum lattice (i.e.. the origins of the various viewpoint hierarchies). 

()I 

Lesgold emphasizes that the implicit idea of Gagne's learning hierarchy is that the whole is more 

than the sum of its parts; higher levels in the hierarchy also provide "conceptual glue" that relates lower 

level knowledge. Furthermore, he argues that the knowledge taught in a lesson depends upon the context in 

which the lesson is taught. When a lesson is first taught, its "core content" (Le., a coherent subset of 

knowledge) should be presented, but if a lesson is remedial, "it is crucial to teach the knowledge that links 

the core content of the to-be-remediated lesson with the core content of the lesson whose failure produced 

the need for remediation" (Lesgold, 1988, p. 134). 

On Inaruciional Theory and Design 
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Gagne's ideas have had a large influence on instructional design practices. He and his colleagues 

have developed a well-specified approach to instructional design which can be summarized as follows (see 

Briggs. 1977a): . 

1. NeedsAssessment 

This is a process of identifying instructional goals, ranking them by importance, identifying one or 

more needs, and setting priorities for action. 

2. Write Performance Objectives 

Performance objectives translate goals into specific behavioral criteria for successful performance. 

The proposed GagneBriggs model of performance objectives distinguishes between action, object, situa- 

tion, toois and other constraints, and the capability to be learned. The action denotes what observable 

behavior the student will perform (e.g. writing, running). The object denotes the resulting product of the 

action (e.g., a poem, a painting). The situation describes the circumstances in which the student will per- 

form (e.g., given the PEQUOD simulation with one introduced fault). Tools and other constraints describe 

how the action will be carried out (e.g.. with a pencil) and performance limits (e.g., without the use of refer- 

ences, within 30 minutes). The capability to be learned is inferred from the action; Gagne and Briggs have 

proposed a taxonomy of capabilities that distinguishes between intellectual skill, cognitive strategy, infor- 

mation, motor skill, and attitude. This taxonomy is shown in Table 1. 

InsertTable 1 

about here 

An example of a problem-solving performance objective is as follows (see Kiblcr and Bassctt. 1977). Sup- 

pose the domain of interest is instructional design. and students an to be taught how to write performance 

objectives. A reasonable performance objcctive might bc: Given a general statcmcnt of the scope and 0 
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0 
sequence of topics for a high school course (situation), generate (leamed capability: problem solving) 

appr i a t e  student objectives (object) by writing such objectives (action) within one week (tools, con- 

straints, and special xuirements). 

3. Analyze Objectives 

This is a kind of task analysis in which the taxonomy shown in Table 1 is used. The learning task is 

analyzed with respect to its essential and. supponing prerequisites; such prequisites define a learning 

hierarchy. For example, an intellectual skill has as essential prerequisites simpler component intellectual 

skills and as supporting prerequisites (Le., those not essential for learning but that can be helpful) attitudes, 

cognitive strategies, and verbal information. 

4. Design the Instructional Strategy 

The learning hierarchy provides a prescription of how the instruction should be sequenced; prere- 

quisite skills should be taught first In other words, instruction proceeds "bottom up". At a more fine- 

grained level, Gagne distinguishes between nine instructional events (or teaching steps): gain attention, tell 

the student the objective, stimulate recall of prerequisites, present the stimulus material, provide guidance, 

elicit the performance, provide feedback. assess performance, and enhance retention and transfer. Of par- 

ticular interest are Gagne's suggested forms of guidance for learning; these are reproduced in Table 2. 

Insert Table 2 

about here 

5. Lesson Planning 

Thc suggcstcd steps in lcsson planning are to identify the objective, list the dcsircd instructional 

events, sclect idml media, sclcct materials and activities, analyze materials for evcnts they supply. and plan 

other mcans for thc rcmaining evcnts (Briggs, 1977b). 
0 
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6. Formative Evaluation 

Formative evaluation is the process of testing and revising instructionai materials while they are still 

being developed. Three suggested phases of formative evaluation are one-to-one, small group, and field 

trial evaluations (Dick, 1977a). 

6. Summative Evaluation 

Summative evaluation is the process of collecting and interpreting data about the quality of a pro- 

posed educational product. A suggested fivestep approach to summative evaluation is to identify instruc- 

tional objectives, identify the target population and select students from it, develop evaluation instruments 

(Le, objectives-referend tests, attitude questionnaires, and cost data), document the instructional process, 

and pepare the final report (Dick, 1977b). 

This approach has been quite popular in the educational community: however, it is not without its critics. 

Novak (1986) argues that Gagne's model of learning (i.e.. the learning hierarchy) is founded on a stimulus- 

response association. As such, this model, with its emphasis on "behavioral objectives" and suggested 

bottom-up approach to instructional sequences, is an outgrowth of behaviorist psychology. Novak argues 

for a constructivist, rather than a positivistic, view of epistemology. In other words, rather than an 

exclusive concern with observable data, we should recognize that "humans construct knowledge using the 

concepts, principles, and theories they have, and change their knowledge claims as new ideas and associated 

methodologies lead to new constructions of how people and the universe operate" (Novak, 1986. p. 6). 

Novak also emphasizes the importance of concepts; in fact, he states that "'concepts are what we think 

with.' As we change our concepts and conceptual frameworks in positive ways, we may or may not change 

our behavior. but the meaning of our experience changes" (Novak, 1986. p. 8). 

Novak argues that a model of human learning is essential for a theory of cducation. Rathcr than a 

bchaviorist modcl of learning, he advocates the thcory proposed by educational psychologist David Ausu- 

bel. Ausukl contcnds that the single most important factor in l m i n g  is what thc lcarncr already knows. 

Effective instruction asccrtains the learner's prcscnt state of knowlcdge and tcachcs accordingly. Ausubcl 
0 
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views knowledge as a cognitive structure: a hierarchical organization of concepts, where specific elements 

of knowledge are subsumed under more general concepts. 

Another important idea is that of concept differentiation: "As new experience is acquired and new 

knowledge is related to concepts already in a person's mind, these concepts become elaborated or altered, 

and hence they can be related to a wider a m y  of new information in subsequent learning" (Novak. 1986. p. 

25). Thus, a learner's previous knowledge includes relevant concepts and the extent of their differentiation. 

Ausubel distinguishes between rote and meaningful learning. Rote learning occurs when the new 

material is not associated with any existing elements in the cognitive structure. Meaningful learning occurs 

when new material is linked with subsuming concepts ("subsumers"). The new material is "stored in a 

somewhat altered form (as a product of assimilation with the subsuming concept(s)) and modifies 

(differentiates further) the subsumers to which it is linked" (Novak, 1986, p. 26). 

Ausubel's theory implies that "concept development proceeds best when the most general, most 

inclusive elements of a concept are introduced first and then the concept is progressively differentiated in 

terms of detail and specificity" (Novak, 1986, p. 86). This is in direct contradiction to Gagne's prescription 

of teaching "bottom up". Ausubel's theory is more persuasive, however, in that "top down" insuuction 

gives a context for learning, and, in Wenger's terms. may Serve to warrant belief. 

Novak emphasizes the distinction between curriculum (issues) and instructional (teaching) issues. 

This is similar to the separation of domain and   to rial knowledge that distinguishes the GUIDON system 

(Clancey, 1987). Novak draws on Johnson's model of curriculum design (Johnson, 1967). a simplified ver- 

sion of which is shown in Figure 1. 

Insert Figure 1 

about here 

It is shown that a curriculum dcvclopmcnt systcm uscs knowlcdge available from thc cullurc in conjunction 
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with structuring and selection criteria to produce a curriculum. The curriculum is an input to suuctured 

planning, which also considers instrumental content and teaching behavior repertoire to produce an instruc- 

tional plan. This plan is administered to learners: their performance is evaluated and relevant feedback is 

provided to both curriculum and instructional developmenr. 

Novak relates Ausubel's theory of leaming to Johnson's model of curriculum and instructional 

development in order to specify the nature of each module. Ausubel's emphasis on concepts implies that 

the selection criteria for knowledge should be to select major and minor concepts in the field of study. The 

ordering criteria for knowledge should consider both progressive differentiation and integrative reconcilia- 

tion: 

Meaningful learning and progressive differentiation require the most general, most inclusive 

concepts be presented early and subsequent information be provided to clarify meaning and 

show connections to subordinate concep ts.... Superordinate learning and integrative reconcilia- 

tion require that subordinate concepts be presented in a manner that allows association with 

more inclusive concepts (superordinate concepts), and meanings of apparently disparate con- 

cepts will be clarified to show distinctions and relationships between subordinate concepts 

(integrative reconciliation). (Novak, 1986, pp. 137-138) 

Ausubel's theory implies that the curriculum's "intended learning outcomes" @.Os) should be the 

concepts to be leamed, with associated hierarchical and subordinate relationships. The selected exemplars 

should be chosen such that "cognitive bridging" is provided (i.e.. explicit association between new concepts 

and the existing cognitive structure). Teaching approaches should to flexible and allow for "hands-on 

experience" (or, in Piaget's terms, experience with "concrete props"). Actual learning outcomes am a func- 

tion of the "degree of overall cognitive structure differentiation" and "initial or developed relevant subsu- 

mers in the learner's cognitive structure" (Novak, 1986, p. 139). Evaluation can be examined in tcrms of 

rate or degree of transfer of learning. The rate of lcarning dcpends on the "quality of existing or developed 

relevant subsumcrs, and motivation for l m i n g .  Transfer of learning to new problem solving situations 
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will be a function of the degree of concept differentiation, superordinate subsumption, and integrative 

reconciliation achieved." (Novak, 1986. p. 139). The feedback to cuniculum planning may imply the need 

for "alternative sequences of concept presentation" or "better clarification of relationships between 

conc epts.. .and/or better description of salient aspects of the concept@)" (Novak, 1986. p. 139). Finally, the 

feedback to instruction may indicate the need to select better exemplars (Le., select those more easily linked 

to existing cognitive structure), provide better pacing of instruction, or select a better instructional strategy 

(e.g., one-on-one tutorial assistance when the learners' cognitive development is highly variable). 

As will be described later, it is proposed that OFMTutor employ the coaching method of tutoring, 

with intention-based diagnosis, a modified version of Lesgold's architecture, and an emphasis on relevant, 

meaningful concepts as argued by Ausubel and Novak. 

Interface Design 

The interface design is an important part of an intelligent tutoring system, for the student directly 

experiences interaction with the interface. Two basic routes have been taken in the design of the interface: 

one concerned with graphical, iconic representations; the other with (textual) dialogue management. Often, 

graphical representations are used in conjunction with guided-discovery learning or coached activities (e.g., 

STEAMER. IMTS, RBT), and dialogue systems employ a mixed-initiative dialogue style of interaction 

(e.g., GUIDON). 

Graphical Interfaces. In the domain of complex, dynamic systems, dynamic graphical representa- 

tions of the system's structure and function are useful. STEAMER'S developers felt that a graphical inter- 

face to a simulation would be valuable in that it would allow one to view and manipulate the systcm at a 

number of differcnt hierarchical levels. The graphical interface is also meant to provide a conccptually 

faithful rcpresentation of the system, in order to foster the development of accurate mental models of the 

system (Hollan et al., 1987). 

Thc IMTS system providcs a numbcr of software tools that enable the development of simulation- 

based technical training (Towne ct al., 1988). IMTS supports both physical and functional vicws of dcvicc 

componcnts, in ordcr to "promotc the studcnt's ability to find. recognize, and manipulate physical elements 

@ 
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I in the real system, while maintaining a conception of the functional relationships that cannot be seen 

directly in the real system" (Towne et al., 1988, p. 18). 

RBT "provides tools for reasoning" about the operation of a kraft recovery boiler. These tools 

include graphs that depict the relationship between various process parameters over time, meters that show 

the system state at higher levels of abstraction (e.g., safety, efficiency, and reliability), and interactive 

tutorial dialogues. The system also uses animated graphics to represent a mathematically and physically 

accurate simulation of the boiler. 

AHAB works with the PEQUOD simulation of a marine steam powerplant PEQUOD uses a qualita- 

tive approximation methodology (Govindaraj, 1987) that represents the system at various hierarchical lev- 

els. System states are calculated quantitatively but gauge readings, etc. are represented qualitatively. The 

student can inspect schematics of subsystems that provide information on causal flow and system state. 

The student also interacts with menus and windows to determine feasible tests, make diagnoses, and gain 

performance feedback. 

GUIDON-WATCH is a graphic interface to NEOMYCIN, a medical consultation system. 

GUIDON-WATCH allows the student to browse through the database and view reasoning processes for 

diagnosis (Richer and Clancey, 1985). A number of windows provide information on current hypotheses, 

causal relations among symptoms, a diagnostic task tree, current evidence, and positive findings. 

The importance of a graphical interface is supported by research in human-machine interaction (cf 

Norman and Draper, 1986). Some forms of interaction are facilitated with a conceptually natural and sim- 

ple interface composed of iconic rcpresentations of objects rather than text. For training and tutoring in 

domains associatcd with complex dynamic systems, graphical interfaces allow the student to conceptualize 

system structure and function in a natural manner and to concentrate on learning rather than the intcnction 

itself. 

Toward u Theory of Discourse. Whcn tutorial interactions are necessary, how should the tutor intcr- 

vcne? How docs the tutor know when to intcrvenc, what to say, and how to say it? The answer to these 

questions involvcs a consideration of discourse, which is intimately Ucd to thc choscn pedagogical strategy. 

0 
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Burton and Brown (1982) provide specific principles of interaction for a tutorial coach; these are summar- 

ized in Table 3. 

Insert Table 3 

about here 

Such rules of thumb are useful guidelines but do not provide any principled theory of discourse con- 

ventions in tutoring. Other researchers have focused on how human tutors interact with students (Woolf, 

1987; Fox, 1987a and 1987b). Fox (1987a) argues that the tutorial interaction itself (e.g.. the way the stu- 

dent responds to questions and the timing of the response) provides diagnostic information and advocates 

that at least timing information can be utilized by an automated tutor. Thus, a lengthy pause between a 

question posed by the tutor and the student's response may indicate that the student encounted difficulty in 

arriving at the answer. Fox also stresses that "repair is an essential factor in natural language interface 

design" (Fox, 1987b. p. i). In an analysis of face-to-face conversational tum-taking between a human tutor 

and student, Fox notes that such turn-taking is very flexible, not primarily controlled by the tutor, and offers 

a fundamental mechanism for repair that is missing from the same type of interaction over a teletype 

machine. What is lost from the terminal-to-terminal interface is the "opportunity for the hearer to indicate 

understanding or lack of understanding at the end of every unic and the opportunity for the speaker to ini- 

tiate correction on his/her own turn after it was sent" (Fox, 1987b. p, 5). Fox further notes that "certain 

kinds of interruption are essential for maintaining mutual comprehension" and thus vital for repair (Fox, 

1987b. p. 8). Fox's suggestions for dialogue management for an intelligent tutoring system are given in 

Table 4. 

Insert Table 4 

about here 
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Clancey (1982) argues that a case method tutor needs knowledge of dialogue patterns, domain 

knowledge, and the communication situation in order to cany on a dialogue with a student. Clancey's case 

method tutor is GUIDON, a tutor that works in conjunction with MYCIN, an expert system for diagnosis of 

infectious diseases. Augmented domain knowledge allows GUIDON to use metaknowledge to reason 

about MYCIN's rules and thus to use domain rules in a variety of ways. The communication situation is 

defined by the student model (an overlay model that represents what topics or rules the student has and has 

not yet demonsfrated that he/she has leamed) and the "focus record" that lists goals that the student has 

inquired about. GUIDON uses "discourse procedures" invoked by tutoring rules to direct and focus the 

case dialogue. The tutoring rules use knowledge of the communication situation as preconditions: thus. the 

communication situation drives the tutorial interaction. The tutoring rules are used to select discourse pat- 

terns (guide discussion of a domain rule. respond to a student hypothesis, and choose question formats), 

choose domain knowledge (provide orientation for choosing new goals, measure interestingness of domain 

rules), and maintain the communication model (update the student model). 0 
Woolf (1987) has investigated the machine representation of discourse conventions in tutoring. She 

notes that discourse "is often described in qualitative terms along with the efect of the utterance on the 

listener" (Woolf. 1987. p. 250). Discourse analysis often seems guided by implicit rules that are based on 

the perception of qualitative states such as "what the student already knows". Woolf and her colleagues 

have begun developing a theoty of discourse based on the recognition of qualitative states such as "student 

is confused" and "topic is generally known". As a first step towards this, Woolf defines conversational 

move-classes "as groups of utterances that have the same rhetorical effect" (Woolf, 1987. p. 253). such as 
- 

question-topic and provide-example. The choice of a move-class indicates the speaker's intention in that 

the listencr has particular expectations given a certain typc of move. Woolf proposes tutoring maxims 

based on Paul Grice's maxims of conversation: quality (bc truthful), quantity (be brief. yct complctc), rcla- 

tion (be rclevant) and manner (be clcar and orderly) (Mura. 1983). Woolf's adaptions of Grice's maxims 

are shown in Table 5. and the tutorial maxims in rclation to move-classes are shown in Table 6. 

0 
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Insert Tables 5 and 6 

about here 

The moveclasses are also defined with respect to their probable implications. These implications 

define implicit assumptions that are "taken for granted" in natural conversation. For instance. the choice of 

the question-topic class implies that the tutor "knows (or attempts to learn) the student's threshold of 

knowledge", "assumes the student can answer the question", and "thinks the topic is important or is learn- 

able through the discourse" (Woolf, 1987, p. 256). Additional global implications are possible, based on 

"extended reasoning about sequences of moveclasses" (Woolf, 1987, p. 256). Such global implications 

are assessments such as "student undersmnds" and "topic was complete"; these are inherently uncertain and 

form the system's current best hypothesis of the student's state of knowledge or current topic. Such reason- 

ing with uncertainty requires the ability to entertain multiple, possibly conflicting hypotheses and to resolve 

conflicts based on accumulating evidence. 

Summary 

This section has discussed previous research in intelligent tutoring systems, with emphasis on appli- 

cations to domains associated with complex dynamic systems. Theories of education, learning, and 

discourse have also been considered. The following considerations are especially relevant to the design of 

OFMTutoc the simulation of a complex dynamic domain, a process model of expertise, intenuon-based 

diagnosis and student modeling, the coachinglguided discovery paradigm, the importance of concepts in a 

structured curriculum, a graphical dynamic interface to a complex dynamic simulation. and discourse 

models that allow for repair. 

/ 

OFMTUTOR DESIGN 

The design philosophy bchind OFMTutor is similar to that of the RBT systcm (Woolf, 1986): the 

tutor is a "partner and co-solver of problcms with the operator" (Woolf, 1986, p. 11). This has much in 

common with thc approach of the "joint co4tive system" describcd by Woods (1986). The joint cognitive 
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system paradigm proposes that the computer provide support for the operator, giving context-sensitive rem- 

inders and suggestions, rather than dominate the interaction. 

This approach.has several implications for the design of an intelligent tutoring system for supervisory 

control of a complex dynamic system. First, the domain expertise and student models must be represented 

as process models (Wenger, 1987) that explicitly capture procedural knowledge and decision making 

behavior. Second, joint hypothesis formation and decision making imply the need for a pedagogical sua- 

tegy of coaching in a guided discovery (reactive leaming) environment. Finally, the interface design must 

support the explicit representation of domain expertise and an inspectable model of joint hypotheses. 

In the next section I review the theoretical foundations of OFMTutor with a discussion of the opera- 

tor function modeling methodology. Next, a blackboard architecture that implements the OFM for intent 

inferencing is discussed. Finally, the design of OFMTutor is presented. The OFMTutor architecture is 

based on that of OFMspert (Operator Function Model expert system) (Rubin et al., 1987). ,a 
The Operator Function Model 

The OFM provides a flexible fiamework for representing operator functions in the control of a com- 

plex dynamic system. The OFM represents how an operator might organize and coordinate system control 

functions (Mitchell, 1987). Mathematically, the OFM is a hierarchic-heterarchic network of finite-state 

automata. Network nodes represent operator activities as operator functions, subfunctions, tasks, and 

actions. Operator functions are organized hierarchically as subfunctions, tasks, and actions. Each level in 

the network may be a hetcrarchy, i.e., a collection of activities that may be performed concmnrly. Net- 

work arcs reprcscnt systcm triggcring events or the results of operator actions that initiate or tcrminate 

operator activitics. In this way, the OFM accounts for coordination of multiple activitics and dynamic 

focus of attcntion. A gencric example of an OFM is illustrated in Figure 2. 

Insert Figurc 2 

about here 
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Historically, the OFM is related to the discrete control modeling methodology (Miller, 1985; 

Mitchell and Miller, 1986). The OFM is distinguished by its modeling of both manual and cognitive opera- 

tor actions in the context of system triggering events. Manual actions are system reconfiguration com- 

mands. Cognitive actions include information gathering and decision making that are typically supported 

by information requests. 

The OFM is a prescriptive model of human performance in supervisory control. Given system 

triggering events, it defines the functions. subfunctions, rash, and actions on which the operator should 

focus. Used as an expert model, the OFM generates expectations of likely operator actions in the context of 

current system state. Used as a student model, the OFM defines likely operator functions, subfunctions, 

and tasks that can be inferred based on operator actions and system state. This ability to infer intentions 

dynamically is crucial for intention-based diagnosis, and also forms the core of the domain expertise and 

student models. 

Successful application of the OFM to intent inferencing in a supervisory control task (Rubin et al.. 

1987; Jones, 1988; Jones et al., 1988) demonstrates that the OFM is a viable basis for determining operator 

(student) intentions in the context of current system state and past operator actions. This application util- 

ized a knowledge-based problem solving methodology known as the blackboard model of problem solving 

(Nii, 1986). The next section describes this implementation. 

The Blackboard Model of Problem Solving 

The blackboard modcl of problem solving consists of three components: the blackboard, knowledge 

sources. and blackboard control (Nii, 1986). The blackboard is a data structure on which the current best 

hypothesis of the solution is rnaintaincd and modificd. The hypothesis is representcd hicrarchically, at vari- 

ous levels of abstraction, and evolves incrcrnentally over time as new data becornc available or old data 

become obsoletc. Domain-specific knowlcdge is organized as a collcction of indcpcndcnt knowlcdge 

sources. Knowlcdgc sourccs arc rcsponsiblc for posting and interprcting information on thc blackboard. 
0 
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Blackboard control applies knowledge sources opportunistically; that is. in either a top-down or bottom-up 

manner, depending on what is more appropriate in the current context 

The blackboard model of problem solving is compatible with the knowledge represented in the OFM. 

Both models use a hierarchical representation. The blackboard knowledge sources provide a modularity 

that naturally represents much of the domain knowledge contained in the OFM arcs. The opportunistic 

control strategy offers the dynamic flexibility necessary for infemng intentions in real time. 

Operator intentions may be represented as a hierarchy of goals, plans, tasks, and actions that 

correspond to the OFM’s hierarchy of functions, subfunctions, tasks, and actions. Goals are currently 

instantiated functions, plans are currently instantiated subfunctions, and so on. The general mechanism for 

the blackboard approach to intent inferencing is as follows. Given an OFM, currently hypothesized goals, 

plans, and tasks (GPTs) or sometimes additional plans and tasks (PTs) for an existing goal are placed on the 

blackboard in response to system triggering events. The blackboard incorporates operator actions into the 

representation with opportunistic reasoning. Thus, actions can be immediately interpreted as supporting 

one or more current goals, plans, and tasks; and goals, plans, and tasks can be inferred on the basis of 

operator actions. In general, actions are interpreted with a strategy of maximal connectivity; actions that 

can support more than one current task are interpreted as supporting all such tasks. Figure 3 shows the pro- 

posed blackboard model of intentions. 

Insert Figure 3 

about here 

Other Modeling and Pedagogical Considerations 

The OFM is not enough to define all the howledge needed for tutoring. Thc OFM docs not cxpli- 

citly represent the system to be controlled; it specifies operator functions within that system. This lcvel of 

explanation is reasonable for well-mind operators but is insuficient for tutoring purposes. Like 

0 
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GUIDON, OF'MTutor will have to be augmented with supporting domain knowledge. Based on Novak's 

theory of education. such supporting knowledge should be in the form of concepts whose subsuming rela- 

tionships should be clearly explicated. The relevant concepts associated with a complex dynamic system 

include the system's purpose, function, and structure. In particular, these concepts can be described in 

accordance with Rasmussen's (1986) abstraction hierarchy. Thus, both knowledge of the system (the 

absnaction hierarchy) and knowledge of operator hnctions (the OFM) correspond to a hierarchical m g e -  

ment that suggests the course of "top down" instruction proposed by Novak. Furthermore, since knowledge 

of the system is, in Gagne's terms, an essential prerequisite for knowledge of how to control the system. 

system concepts should be taught before operator function concepts. Figure 4 illustrates the absuaction 

hierarchy. 

Insert Figure 4 

about here 

Furthermore, the OFM does not represent errorful behavior. Thus, the inclusion of "buggy" GPT's is 

necessary as a "limited bug model" similar to AHAB's. In this way, broad classes of misconceptions can 

be diagnosed and remedied appropriately. In order to build representations of misconceptions, a thorough 

cognitive task analysis of novice users is necessary. By careful observation of subjects interacting with the 

system, as well as protocol and off-line analyses, one may be able to characterize misconceptions and their 

manifestations in action patterns. Then the intelligcnt tutoring system can be given knowledge of particular 

action sequences and probable underlying misconceptions associated with them. 

The Representation of the Expert and Student 

The combination of the OFM and blackboard model of problem solving define a process modcl 

(Wcnger, 1987) that can bc used to reprcscnt expcrtise and student knowlcdgc. The "expcn's" goals, plans. 

and tasks can be reprcscntcd on one blackboard. and the student's inferrcd intentions can bc repmentcd 
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similarly on a separate blackboard. Differential modeling can easily assess the difference between the two 

blackboards. If the student model is missing intentions that the expert has, a reminder or hint can be 

employed to remedy, this error of omission. If the student model includes some intentions not modeled on 

the expert blackboard, this may signal a misconception to be corrected with the proper intervention. 

The expert's goals, plans, and tasks are inferred on the basis of current system state. Thus, inten- 

tions are derived from the (nonnative) operator function model for GT-MSOCC. In contrast to the expert's 

model-derived intentions, the student's goals. plans, and tasks are i n f e d  based on student actions. The 

student's intentions may also be modeled with the "buggy" GPT's described previously. Both representa- 

tions exist in a component of OFMTutor known in general as the Blackboard. The Blackboard actually 

consists of an expert and a student blackboard, where hypothesized intentions are posted and compared. 

Supporting Domain Knowledge 

Like AHAB and RBT. OFMTutor will require that students interact with a simulation of a complex 

dynamic system. Unlike AHAB and RBT, OFMTutor is designed to exist on a computer separate from the 

simulation itself. This distributed environment supports the clean separation of domain dynamics and 

tutoring knowledge and strategy. Furthermore, the portability of the OFMTutor architecture is enhanced in 

that it can, in theory, be placed "on top of" any complex dynamic system simulation for which an OFM can 

be constructed. Philosophically, it can be argued that intelligent tutoring is but one point on a continuum of 

intelligent aiding in general, and since our design philosophy of the operator's associate dictates such a dis- 

tributed environment (Rubin et al., 1987; Jones et al., 1988). it is natural that OFMTutor also requires such 

an architecture. 

The requircment of a distributed cnvironment means that OFMTutor must have an explicit rcprcscn- 

tation of current system state. This reprcscntation may be tcrmed the Currcnt Problcm Space (CPS). Thc 

CPS is nccded to givc contcxt for the modcling of fitcntions and for pcdagogical intcrvcntions. Also, a 

rcpresenlation of the currcnt displays to thc studcnt is ncccssary in order to infcr what information is 

currently avaihblc to thc studcnt. This rcprcscntation is callcd the Workstation dcscription. The Worksta- 

tion maps the namcs of display pagcs to thcir semantic information content 

0 
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OFMTutor must also support knowledge of domain concepts. Beyond the procedural knowledge 

defined in the OFM, an operator must have some grasp of the underlying principles of the system's shuc- 

ture and function. This includes knowledge of the system's purpose, abstract function (e.g., flow of data), 

function, and physical form. Such knowledge can be captured within the framework of Rasmussen's 

(1986) abstraction hierarchy. The abstraction hierarchy forms part of the additional knowledge needed for 

tutoring. This additional knowledge also includes pedagogical knowledge and strategies and the limited 

bug model goals. plans, and tasks. These enhancements to the knowledge in the OFh4 define the Enhanced 

Normative Model (ENTvI). 

Finally, the architecture requires a Communication Interface that communicates with the simulation 

of the system and with the tutorial interface to the student. Information about system events and student 

actions is sent from the simulation and the tutorial interface to OFMTutor. A scheduler, called the High 

Level Controller, manages the various events within OFh4Tutor. The complete architecture is shown in 

@ Figure5 

Insert Figure 5 

about here 

Pedogogical Strategy 

OFMTutor's pedagogical strategy is guided both by Ausubel's and Gagne's ideas: Le., concepts and 

essential prerequisites. Since a concept of the system is an essential prerequisite for laming operator func- 

tions to control that system, the instructional process is divided into two broad sections: one on concepts, 

and one on control. The "conceptual" curriculum is prescnted top down and organized with respect to 

Rasmussen's abstraction hicrarchy. The student's knowledge is assessed via on-line quizzes and question- 

@ naires. 
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When the student has mastered system concepts, control functions will be taught Here, the studcnt 

will learn procedures for controlling the system. This phase of instruction is organized top down with 

respect to the operator function model. Also, while the first phase of instruction will rake place solely in the 

context of the tutor, the second "operational" phase is taught in the context of the system simulation. In this 

phase, the tutorial strategy is one of guided discovery, in which the student explores the system and is given 

non-intrusive assistance by a "coach." The student has relatively greater control over the interaction here 

than in the first phase. 

Diagnosis occurs by differential modeling of the two blackboards as described earlier. However, the 

tutor does not give explicit advice or warnings immediately when a discrepancy is noticed. It is important 

to allow an opportunity for the student to "get back on track" independently. 

Tutorial Interface 

OFMTutor's interface is a multiwindow environment that allows the student a fair degree of control 

over the interaction. The student may collapse or open any windows desired at any point in time. In the 

first phase of instruction, the tutorial interface consists of animated views of the system, text that describes 

concepts, and multiple-choice and fill-in-the-blank quizzes. 

During the second phase of instruction. the interface supports a graphical representation of joint 

intentions; that is, a representation that explicitly shows the comparison of the expert and student model 

blackboards. Supporting text windows include a list of expected commands, a list of all commands (so that 

failures to remembcr syntax are minimized), and dynamically gencrated advice and suggestions. 

OFMTUTOR EVALUATION 

Park et al. (1987) ~ S C R  that one mcthodological diffcrencc bctwccn computcr-bascd instruction -.rd 

intclligcnt tutoring systcms is that the former pay attcntion to evaluation procedurcs. and thc lattcr do A I A .  

In this scction we examinc evaluation procedurcs from both instructional and industrial-organizational 

points of vicw, with the aim of dcriving uscful cvaluation procedurcs for an intclligcnt tutoring systcm such 

as OFMTutor. 
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Traditional Instructional Evaluation 

As discussed previously, formative and summative evaluation comprise part of the instructional 

design process. Dick (1977a) describes formative evaluation: 

Formative evaluation may be ... defined as a process of systematically uying out instructional 

materials with learners in order to gather information and data which will be used to revise the 

materials. The implication of the tegn 'formative' is that the evaluation process occurs while 

the materials are still being developed. 

... The sole purpose of formative evaluation is to provide the instructional designer with as 

much information as possible to revise and strengthen the product which is under development. 

(pp. 311-312) 

The first suggested phase of formative evaluation is one-to-one evaluation. A small representative 

sample of the target student population (preferably three students -- one of below average ability, one of 

average ability, and one of above average ability) works through a draft of the instructional materials 

(including any tests) with the designer. Students give feedback both by their performance and comments to 

the designer. The designer also asks specific questions in order to discover particular strengths and 

weaknesses of the materials. This phase is much like a "pilot study" used in mditional experimental situa- 

tions. The one-to-one phase also includes a review of the materials by a domain expert in order to insure 

the accuracy of the content. The output from this phase is a set of comments and observations on any 

dificulties encountered in the use of the materials. The instructional matcrials are revised with respect to 

this output, and the revised materials are uscd in the second phase of formative evaluation. 

The second phase of formative evaluation is a small-group evaluation. The purposes of Lhis phase are 

to evaluate the eUcctivencss of thc first phase's rcvisions, identify any remaining dillicultics. and bcgin thc 

dctcrminalion of the feasibility of administcring thc materials in thc field. Dick (1977a) rccommcnds a 

rcpresentalive sample of bctwan cight and 24 studcnts for the small-group evaluation. Thc studcnu tnkc 

tests and study Lhc matcrials in a manncr similar to that to be uscd in the Lcld. Qucstionnaircs arc also 
0 



given, and any helpful comments are solicited as well. The output from the second phase of formative 

evaluation includes comments, questionnaire data, test scores, and learning times. 

The third phase of formative evaluation is field trial evaluation. The major purpose of this phase is to 

"determine the administrative feasibility of using the instructional materials under normal classmm condi- 

tions" (Dick, 1977a. p. 316). as well as to ascertain the effectiveness of the previous revisions. The most 

critical component of this evaluation phase is that the materials are used in the environment for which they 

are ultimately intended. Dick (1977a) suggests that the sample size for field trial evaluation should be at 

least 30 students. 

Dick (1977a) notes that no guidelines exist for when to terminate formative evaluation: the decision 

to terminate formative evaluation "is based almost entirely upon the specific circumstances surrounding the 

development project" (p. 330). Typically. time requirements or funding are important factors. Designers 

may also set statistical criteria to be met. For example, the military established an "80k30" criterion for for- 

mative evaluation termination. This meant that when 80% of the students achieved 80% of the proposed 

objectives, the formative evaluation process was judged complete. 

@ 

In practice, formative evaluation is usually the last stage of the design process. However, very often 

we are interested in comparing alternative instructional products. Summative evaluation is a process meant 

to provide data needed this comparison proccss. 

Dick (1977b) reviews several models of summative evaluation. One model, proposed by Gagnc and 

Briggs, has four components: support, aptitude, process, and outcome evaluation. Support cvaluation 

examines the instructional materials, the climate of the teaching environment, parcntal and pcer attitudcs, 

and other factors that may affect learning. Aptitude evaluation, or the evaluation of lcamcr aptitude, is 

important in that aptitudc is significantly corrclatcd with eventual learning outcomcs. Furthcrmorc. 

knowledgc of thc lcarncr population hclps dcfinc thc gencralizability of thc summativc cvalution studies. 

Process cvaluation rcfcrs to the documcntation of instructional matcrials and proccdurcs and thc formativc 

evaluation proccss. Outcomc cvaluation rcfcrs to the cvaluation and rcporting of instructional objcctivcs, 

criteria for succcss, and rcsults of product succcsscs ilnd failurcs. 
0 
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The basic process of summative evaluation, as described by Dick (197%). consists of five stcps: 

identification of intended outcomes, identification of the target student population and experimental design, 

development of the evaluation instruments, documentation of the instructional process. and preparation of 

the final reporL First, one identifies the relevant instructional goals and objectives. Next, one identifies a 

representative sample of students. Depending on the availability and size of the sample, one has several 

alternative experimental situations: comparisons between two experimental groups. comparison of one 

group to norms for a standardized exam, or, in the worst case, to establish criteria for success and adminis- 

ter the appropriate tests to the sample after the completion of their studies. The summative evaluation is 

also responsible for developing evaluation instruments for data collection. These include means for assess- 

ing learning outcomes (e.g., objectives-referenced tests). attitudes about the instructional content and form 

(e.g.. questionnaires), and cost The instructional process itself must be documented thoroughly, and a clear 

final report prepared. 

Training Program Evaluation 
a 

From an industrial-organizational psychology perspective, Landy and Trumbo (1980) review several 

different approaches to the evalution of training programs. One approach distinguishes between internal 

criteria (Le.. performance in the training situation) and external criteria (Le.. performance on the job). 

Landy and Trumbo give examples of each: 

Internal criteria include objective exams, questionnaires reflecting attitude changes by the 

trainees, and the opinions of trainces, trainers, or others as to the effectivcncss of the program. 

Comparison of training methods or programs may use thc numbcr of hours of training rquircd 

to reach a common training pcrformance level as an intcmal mcasurc. A similar critcrion -- 
hours (days or wecks) to rcach standard production on the job ufer mining  -- would bc an 

external critcrion. Extcmal criteria include mcaurcs of quantity or quality of production, timc 

to rcach production Icvcls, accidcnt rccords (for safcty training) and other indications of job 

behavior or training results. (p. 2%) 



Another approach distinguishes four levels of criteria: reaction, learning, behavioral, and results cri- 

teria. The former two correspond to internal criteria, and the latter two correspond to external criteria 

Reaction criteria are concerned with the trainees' opinions of the program and typically consist of one or 

more questionnaires. Learning criteria include final exams, performance tests, and other measures of how 

much was learned. Learning criteria should reflect the objectives of the training program. Behavioral cn- 

teria include performance measures on the job. Results criteria involves the assessment of the utility of 

training with respect to organizational objectives (e.g., percent increase in job proficiency, percent decrease 

in accidents or turnover). 

Landy and Trumbo also discuss various experimental designs used in the assessment of training pro- 

grams. Solomon's proposed four group design is one of the most famous and most complete (see Figure 6). 

The group of prime interest is the experimental group, which is given a pretest, undergoes training. and is 

then given a posttest. The Control 1 group is given "sham training" during the training period to control for 

the "Hawthorne effect" (i.e., the effect of perceived experimental manipulations on performance; the famed 

Hawthorne studies showed that workers' productivity increased when they believed that working conditions 

were altered for the better, when in fact the conditions were exactly the same! This phenomena is also 

known as the "placebo effect"). The Conuol 2 group is needed to control for the effect of time (i.e.. the 

effect of waiting the duration of the training period before taking the posttest). Finally, the Control 3 group 

is needed to control for thc cffect of giving a pretest. 

Insert Figure 6 

about here 

Proposed OFMTutor Evaluation 

Formativc cvaluation is a vcry important part of any cducational projcct. Bccnusc OFMTutor is not 

intcndcd for simullancous usc by a classroom of studcnrs, it is proposcd that thc onc-on-one and small 
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group evaluations are sufficient for this purpose. The focus of summative evaluation will be on students 

trained with OFMTutor as compared to those who read over a training manual and operated the system 

untutored. 

Academic research projects typically do not have the opportunity to work with real operators of com- 

plex dynamic systems. The OFWTutor evaluation will focus on internal criteria; specifically, reaction 

(questionnaire) and behavioral (performance) criteria. 
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Figure 2. A Generic Operator Functjon Model 
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Figure 3. The Blackboard Intent lnferencing Structure 



Functional Purpose 
Production flow model 
System objectives 
Constraints 

Abstract Function 
Causal structure 
Flow topology 

Generalized Function 
"Standard" functions: 
Feedback loops 
Heat transfer 

Physical Function 
Electrical, 
mechanical, 
chemical processes 

Physical Form 
Physical appearance 
Material and form 

Figure 4. The abstraction hierarchy. Adapted from Rasmussen, 1986, p. 15. 



P 

E 

!$ 
0 

UJa 
m 

-3- 

r 



I Group Before Training Period A f t e r  

Experimental Test Train Test 

Control 1 Test Placebo activity Test 

Control 2 Test No train Test 

Control 3 No test No train Test 

Figure 6. Four-group experimental design proppsed by 
Solomon. From Landy and Trumbo, 1980, p. 300. 



Table 1. Taxonomy of capabilities and actions. 
Adapted from Briggs, 1977, p. 69. 

Capability Action Examp le 

Intellectual Skill 

Discriminates 

Concrete Concept 

Defined Concept 

Rule 

Problem Solving 

Cognitive Strategy 

Information 

Motor Skill 

Attitude 

Discriminates 

Identifies 

Classifies 

Demonstrates 

Generates 

Originates 

States 

Executes 

chooses 

Distinguishes sounds 

Names computer components 

Classifies using definition 

Solves linear equations 

Synthesizes rules to generate 
solut ion 

Applies model of diffusion to 
originate solution to 
reduction of air pollution 

States current events 

Drives a car- 

Chooses to share toys 



Table 2. Suggested guidance for particular learning 
outcomes. Adapted from Gagne, 1977, p. 21 1. 

1 Learning Outcome Suggested Guidance 

Discrimination 

Concrete Concepts 

Defined Concepts 

Rules 

Problem Solving 

Cognitive Strategies 

Names and Labels 

Facts 

Organized Knowledge 

Motor Skills 

Attitudes 

Point out distinctive features of 
objects to be discriminated 

Gives cues to identifying attributes 

Present component concepts in 
proper sequence 

Show how component concepts 
make up the rule 

Provide minimum cues needed to 
select and apply rules 

Provide only indirect cues 

Provide coes or memory bridges 

Provide meaningful context 

Provide prompting in the context 
of the organizational framework 

Stimulate recall of sequence of acts; 
provide practice with feedback 

Show human model behavior and 
how reinforced 



I. 
Table 3. Some principles of interaction for a coach. 
Adapted from Burton and Brown, 1982. 

Principle 1 : Before giving advice, be sure that the issue is one in 
which the student is weak. 

Principle 2: When illustrating an issue, use an example (alternative action) 
that is dramatically superior to the action taken by the student. 

Principle 3: After giving the student advice, allow an opportunity for 
redoing the action. 

Principle 4: If a student is close to making a serious mistake, interrupt 
and tutor only with advice that will prevent that mistake. 

Principle 5: Do not tutor on two consecutive actions. 

Principle 6: Allow the student to explore before tutoring. 

Principle 7: Praise the student when appropriate. 

... 
Principle 10: If a student asks for help, provide several levels of hints. 

... 

Principle 12: Be forgiving of possibly careless errors. 
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Table 4. Fox's suggestions for dialogue management. 
Adapted from Fox, 1987b, p. 12. 

Turn-taking should not be an on-off option. The interface 
must allow for each party to participate as they see fit. 

It is especially important that during a turn, the other 
party have the ability to show understanding, initiate 
repair, etc., at the end of every conversational unit. 

The turn-taking mechanism must provide flexibility in 
turn length. 

Correction of the student, or initiation of such correction, 
should be withheld until the student has had an opportunity 
to self-correct, or initiate self-correction. 



Table 5. Woolf's adaptions of Gricean maxims for discourse. 
Adapted from Woolf, 1987, p. 254. 

Qual i ty  Be committed and interested in student's knowledge. 
Be supportive and cooperative. 
Do not take the role of "antagonist" 

Quantity Be specific and concise. 
Use a minimum of attributes to describe a known concept. 

Relat ion Be relevant. 
Find the student's threshold of knowledge. 
Bring up new topics and viewpoints as appropriate. 

Manner Be in control. 
Allow both the student and the context to determine the topic. 



Table 6. 
move-classes. From Woolf, 1987, p. 255. 

Tutoring maxims supported by conversational 

Be Cooperative 
Work with student Explain, summarize, review or repeat, 

and clearly terminate topics. 
Release control of dialogue. 

Be Committed 

Show interest 

Support student 

Be Relevant 

Find student's 
threshold 

Teach at 
threshold 

Acknowledge answer. 
Explain topics. 

Ou t h e ,  introduce topics. 

Question student. 
Evaluate student hypotheses. 
Propose and verify misconceptions. 

Provide analogy examples. 
Summarize topic. 

Be Organized 

Structure domain 

Complete 
information 

Be In Control 

Strictly guide 
disco u re 

Outline, introduce, 
terminate, review topics. 

Clearly terminate topics. 
Teach subtopics and attributes after topic. 
Teach subgoals after goal. 

Introduce, describe topic. 
Question student. 
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Inlzmduction 

The purpose of this paper is to provide an overview of the research in 
the field of intelligent tutorial systems (ITS). More specifically, the various 
approaches in the design and implementation of ITS will be examined and 
discussed in the context of problem solving in an environment of a complex 
dynamic system (CDS). Although there have been several execellent 
sources of discussion on the work in ITS (Sleeman and Brown, 1982; 
Wenger, 1987; Psotka et. al., 1988), the motivation for the paper stems from 
the need to consolidate the findings in the research to a specific domain of 
interest. In the Center for Human-Machine Systems Research at the 
Georgia Institute of Technology, one of our interest and focus of research is 
the application of ITS to complex dynamic systems. 

Several relevant topics will serve as the background to the actual 
study on the numerous ITS. First, issues pertaining to a CDS will be 
considered. Next, the nature of human problem solving will be discussed, 
especially in light of a CDS. Then, an overview of the architecture of an 
ITS will be provided as the basis for the in depth examination of various 
systems. Finally, the implications for the design and evaluation of an ITS 
will be discussed along with some concluding remarks and thoughts. 

Complex Dynamic Systems 

With the advancement of computer technology, the trend towards 
more complex systems has posed immediate challenges to  the field of 
human-machine interactions due to the changing role of an operator in his 
work environment. Rasmussen (1986) has cautioned that automation 
made possible in these systems do not render the human obselete, rather, 
only the previous responsibility of the human operator in low level system 
controls have now been replaced. In fact, Wickens (1984) points out three 
objectives of automation. It allows the execution of functions in a system 
that an operator cannot perform due to inherent human limitations. Also, 
automation may take over functions that do not involve the best of human 
capabilities or are within human limitations but are too taxing. Instead of 
totally taking over, another objective of automation may be to provide 
assistance to the operator in achieving the above functions . 

An operator's new role as a consequence of automation, has 
generally been discussed under the term supervisory control. According to 
Sheridan (1976) "the supervisory control .paradigm applies to  situations 
where a person allocates his attention among various graphical or 
alphanumeric displays and intermittently communicates new programs to 
a computer which itself is in continuous direct control of a physical 
process." An operator engaged in supervisory control (thus, he is the 
supervisory controller) must deal with multi-task, multi-goal and multi- 
person environments (Baron, 1984). The various activities of a supervisory 
controller have been characterized in different but consistent ways. 
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Sheridan (1984) considers the planning, teaching, monitoring, intervening 
and learning modes of a supervisory control task. Wickens (1984) discusses 
the control versus diagnostic nature of the operator's task. Baron (1984) 
catagorizes the activities into planning, monitoring, situation assessment, 
decision-making, control and communication. Salvendy (1984) breaks 
down the task into monitor, control, interpret, plan and diagnose. Yet 
another simple dichotomy of a supervisory control task is that of monitoring 
versus trouHeshooting. Generally speaking, these activities focus on the 
cognitive behavior instead of the psychomotor performance of the operator. 

These tasks imply requirements at a level not considered before 
(Rasmussen, 1986). For example, an operator must be trained differently in 
order to meet the demands of his new tasks. An operator must possess 
knowledge and understanding about .the system at a sufficient depth in 
order to  handle both normal and abnormal situations. Moreover, with 
automation comes a new set of problems (Wickens, 1984). An operator has 
to  deal with an increased monitoring load in face of a more complex system 
that now have many additional interacting components. On the other 
hand, an operator may exhibit too much trust in the automated 
subsystems, resulting in a false sense of security that in turn affects his job 
performance. There is also the potential problem of "out-of-the-loop 
familiarity". This problem arises when an operator is taken out of the 
normal control-loop replaced by automation, and thus interacting less with 
the system and becoming less familiar with system states. Consequently, 
the operator may be less able to handle system trouble. Although 
automation elimates some low-level human error, it also introduces other 
high-level errors associated with an operator's job. Finally, many tasks 
that previously involve the cooperation of two human operators may now be 
replaced by a less personal operator-machine team. 

How is a CDS distinguishable from other systems? Baron (1984) cited 
the following features for a system that require supervisory control: 
- the system is very high-tech, large scale, expensive and risky in nature - the system involves many complex and dynamic processes with many 

- the system has many subsystems - many but not all aspects of the system are automated 
- manually controllable variables have slow response, in contrast to 

automatically controlled and rapid changing variables 
- the demands on the system is driven by events - there is a need to communicate among operators and with other system 

units - an operator at times have to follow a predetermined set of instructions 
during some predictable situations. 

controllable outputs 

A lot of work has been done to model the human supervisory 
controller (Sheridan, 1984; Baron, 1984; Rouse ? etc). In addition, 
Rasmussen (1986) has recently provided a valuable framework for 
understanding and designing supervisory control systems. The next 
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section discusses a framework for studying the human problem solving 
behavior in a CDS. 

Problem Solving Strategies andModek 

Human problem solving has been the subject for research in many 
aspects of human-machine systems. With respect to a CDS, the tasks of a 
supervisory controller concern that of solving problems in various 
situations. Much of the research in this area has focussed on the 
identification of the different strategies that an operator used in problem 
solving. Salvendy (1984) cited eleven strategies identified in the literature. 
A brief discussion of each method is given below. 

** NEED TO FIND DEFINITIONS 
Backward search (Simon and Simon, 1978) ... 

means-end analysis ... 
and hill-climbing ...( Newell, Shaw and Simon, 19601, 
scan-and-search (Simon and Newell, 1971), ... 
progressive deepening (DeGroot, 1965) ... 
and symptomatic search (Rasmussen, 1981; Wortman, 1971) ... 

Application of examples (Anderson, 1981) refers to  our ability to  solve 
a new problem by referring to an example of an already solved problem. 
Solving problem by analogy (Mayer, 1981; Gentner and Gentner, 1983; 
Rumelhart and Norman, 1981; Carroll et al, 1981) involves using solutions 
in a familiar domain to solve a problem in the new domain. There are 
some problems that are solved by mental simulation (Hollan et al, 1980). 
This means that we envision in our mind a scenario surrounding a fact or 
a problem which may or may not exist. When the problem solving 
situation is that of fault diagnosis, Rasmussen (198 1) points out that an 
operator may use a strategy called topographic search. In this situation, 
the operator has a mental model of the normal functions of the system 
which is mapped against a problem to determine where a system function 
may have failed. Finally, Rasmussen (1981) also noted three general types 
of problem solving behavior: skill-, rule- and knowledge-based 
performance. Skill-based behavior are sensorimotor type performance that 
is very automatic. Rule-based behavior follows some prescribed procedure 
in solving a problem. For complex andlor unfamiliar problems, an 
operator has a goal in mind and plans his actions to achieve the goal based 
on his model of the environment surrounding the problem. This is 
knowledge-base behavior. 

In the study on human problem solving in fault diagnosis tasks, 
several models were proposed (Rouse and Hunt, 1984). These models have 
both prescriptive and predictive value in an attempt to understand the 
nature of human problem solving. First, models of complexity suggest that 
measures of complexity should take into account both the problem and 
problem solver. Second, the theory of h z z y  sets may be used to model the 
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decision-making component in a problem which involves more than yedno 
answers. Rouse and Hunt also proposed a rule-based model where an 
operator is modelled to solve a problem based on a set of situation-action 
heuristics. Next, a h z z y  rule-based model accounts for problem solving 
with highly context-sensitive rules. Lastly, a overall model considers 
problem solving to consist of three levels of behavior: recognition and 
classification of the problem situation, planning towards a solution to the 
problem, ajnd execution and monitoring of the planned actions. 

Complexity in Problem Solving 

In the previous section, problem solving was discussed from a 
prescriptive point of view. The question remains as to what is it that makes 
problem solving complex? Woods' (1988) approach to the psychology of 
human behavior in complex problems is especially relevant to our interest 
in ITS. The reason is that his particular approach provides us with 
insights to determining the goals of an ITS -- what do we want the ITS to  
teach an operator in a complex dynamic system. The questions that Woods 
addressed include: what is complexity? how can we map the inherent 
complexities of particular worlds? what cognitive demands does a world 
impose on problem solvers? The rest of this section summarizes Woods' 
discussions and "answers" to  these questions. 

Complexity is not an entity by itself, it is a characteristic of a 
situation. Problem solving situations where complexity becomes an issue 
can be thought of as interactions between three components. First, there is 
the world or domain of interest to be acted on because of the problem. Next, 
there are one of more agents acting on the world in an attempt to solve the 
problem, in other words, the problem solver(s) and finally, the external 
representation of the world available and perceived by the agent(s). 
Problem solving situations become complex if the inherent characteristics 
of the world impose on the agent(s) cognitive demands that affect the 
adequate performance in various situations. 

From the perspective of the world, Woods defines four dimensions of 
complexity that contribute to the cognitive demands of that world. First, a 
world can be characterized by its dynamism; this include how event-driven 
is the world and how much do various tasks compete over time. The 
number of parts and the extent to  which these parts interconnect and 
interact in a domain provide the second dimension of complexity. A world 
is also characterized by its level of uncertainty in the data that describes the 
state of the world. Finally, the amount of risk involved in a world is the 
fourth dimension of complexity. Thus, every domain or system can be 
analyzed along these dimensions. With respect to the earlier discussion on 
complex dynamic systems, it is observed that the four dimensions are 
consistent with the previous characterization of CDS. In general, a CDS is 
a world that is very dynamic in nature, has many interconnecting and 
interacting parts, and involves some degree of uncertainty and risk. 
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l e  So what is the impact of such a world on the cognitive demands and 
situations that the problem solveds) will have to face? That is, a world that 
is defined relatively high on all the four dimensions above? The rest of the 
discussion will focus on the consequences of each dimension of domain 
complexity on the problem solving environment confronted by the agent(s). 

In a dynamic and event-driven world, problem solving extends over 
time and solution to a problem may be long term and changing. Moreover, 
problems are interrelated: the plan(s) of actions to one problem influence 
the state or solution to other problems. New events or disturbances may 
occur at any time to affect a problem and/or how it is being solved. 
Consequently, a problem solver must have the cognitive skills to cope with 
the above situations. A dynamic world demands that a problem solver 
must be adaptive in two major ways. First, the problem solver must be able 
to make predictions about potential possibilities of how the system may 
behave. Second, the problem solver must be sensitive to the effects of new 
events or disturbances and be responsive to these effects in terms of his 
understanding of the world and his plans towards a problem solution. 
To suport these skills, the problem solver must possess knowledge about the 
world, its different states of behavior and its potential changes between 
states. 

When a domain of interest is characterized by many interacting 
parts, there are several aspects that contribute to  the complexity of the 
problem solving environment. If a problem solver is faced with a system 
with a large number of parts, he must learn to manage his time among 
various tasks that involve different parts. The problem of divided attention 
is intensified when the domain is also dynamic; the problem solver needs 
good prospective memory that enables him to come back to a task at a later 
time. However, if the parts in a system are intricate objects by themselves, 
it becomes very important for the problem solver to  have a good 
understanding of the workings of these parts. In fact, a complex part is a 
system in itself and serves as a subsystem to the larger, global system. 

When numerous components of the domain are extensively 
interconnected, several consequences are inevitable. First, actions carried 
out by the system operator to attain a particular effect may produce 
undesirable side effects. Similarly, errors and faults can propagate within 
various parts in the system. Also, such a world is a prime candidate for 
situations with conflicting and competing goals. In order to  perform 
effectively the reasoning involved in such an environment, the problem 
solver must have knowledge about how different parts interrelate, affect 
and constraint each other in achieving different goal states. When faced 
with a situation with multiple faults, a cognitive demand on a problem 
solver is that of problem formulation. Essentially, the problem solver must 
be able make judgements about the problem to focus on based on his 
assessment of the situation and his knowledge about the system and its 
components. Another cognitive skill that a problem solver should possess e 

5 



is disturbance management, particularly when the domain is also dynamic 
in nature. This skill helps the problem solver deal with the effects of the 
disturbance(s) at the moment and correct the crisis in the long run. Yet 
another cognitive demand on the problem solver involves diagnostic 
situations. The problem solver must have suflicient diagnostic skills to  
avoid errors such as fixation of a single explanation to account for the state 
of the world, treatment of interrelated problems as independent and 
oversimplification of the interconnectedness that exists among the various 
subsystems of the world. 

When the domain is high on the uncertainty dimension of 
complexity, data available to the operator may be unreliable and that a 
given datum may be evidence to more than one part or state of the world. 
As a consequence of the former situation, a problem solver must have 
sufficient inference abilities to collect and integrate the erroneous data in 
order to explain a particular state of the world. To cope with the latter 
situation, the operator must have good reasoning skills to correctly map the 
evidence from the data to the state(s1 these data testify to. Thus, the 
prerequisites to these skills include the problem solver's adequate 
knowledge on the various mappings of evidence to state(s). If uncertainty is 
coupled with dynamism, the task of the operator to collect evidence is 
compounded by two factors. First, not all data about the state of the 
environment are accessible at  a given time. Second, the operator needs to 
weight the potential benefit of the information to be acquired with the cost or 
effort in the acquisition process. As a result, the problem solver needs to  
know different methods for collecting data; that is, he must know when and 
where to look for data. (** mention about monitoring aspect of the 
supervisory controller **) He must respond to and check for system events 
that unfold over time for evidence of a state of the system. Moreover, he 
must have adequate knowledge about the states of the system to initiate 
actions that support evidence gathering. In general, the cognitive demand 
to cope with large amount of data and information is part of problem 
formulation, where the problem solver must have the ability to  discriminate 
and attend to relevant data in order to  arrive a t  a solution. Correct 
utilization of the evidence surrounding an incident will avoid the potential 
of solving the wrong problem. 

Finally, when the world is complicated by the presence of risk, the 
problem solver, in general, is constantly making decisions that takes into 
account the cost of a particular choice of action(s) to the overall state of the 
world. In addition, the problem solver must be concerned with not just 
expected and common situations, but infrequent situations with damaging 
results to the system. 

In the final analysis, Woods emphasizes the importance of the above 
approach in the understanding the complexity of a problem solving world. 
The various demands and situations have strong implications on the other 
two elements of a problem solving situation, namely, the representation(s) 
of the world to the problem-solving agent(s) and the cognitive processing 
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capabilities of the agent(& The breakdown on the different cognitive 
demands and situations also provide the basis for understanding the 
effectiveness and appropriateness of the numerous problem solving 
strategies that were disscussed previously. In accordance to theme of this 
paper, a global and ideal goal of an ITS designed for a complex dynamic 
system is to teach an operator all the cognitive skills that he requires to  cope 
with the various cognitive demands and situations that arised due to 
complexity'of the domain. The ITS should also instill into the operator all 
the knowledge about the system that he will need to support the skills. 
Questions such as how these skills is taught, and how much of the 
knowledge should be or can be taught explicitly are yet to be explored and 
answered. 

Architecture of an Intelligent Tubrial System 

* basic elements are domain expertise, student model, pedagogical 
expertise and interface (Wenger, 1987) 
* similar breakdown by Fath (1987): task model, student model and 
instructional module. Interface is part of simulation. 

*** according to Wenger 

** domain expertise 

* firnctions 
- has two functions: as a source of knowledge and a standard for evaluating 
the student's performance 
- as a standard, must be able to generate multiple solutions to  a problem 
- as a source of knowledge, there is a trade off between representing 
knowledge of expertise as a curriculum (static) versus as a model 
(dynamic) 

* aspects of communicability 
- domain knowledge includes pieces of information that are specifically 
used for instructional purposes (the learning process) 
- issue of transparency of the expert module: how inspectable and 
interpretable are the reasoning steps to the final results 
- issue of psychological plausibility of the expert module: how similar 

- choice of viewpoint of the domain to be taken by the expert module should 
match that of the student. this is a limitation as compared to human 
expert's adaptability to  various student's viewpoints. 

is the expert module's performance as compared to the human's. 

** student model 
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* information: how accurate and well covered is the information contained 
in the student model 
- information to interpret a student's behavior - information to determine the knowledge state of the student based on the 
interpretation of his action 
- explicit representation of the misconceptions a student may have about the 
domain . 
- information to explain how these misconceptions may have come about 

* representation: language of representation must accomodate for incorrect 
knowledge of the student. language for expertise is thus not sufficient. 
- neutral primitives: granular enough to account for both correct and 
incorrect knowledge in domain. language itself does not carry 
"correctness". 
- error primitives: enumerative approach-- information about errors and 
misconceptions for a particular domain of students empirically collected 
and treated as primitives of the language. 
- language is such that the student model should be runnable: model can 
generate predictions about the behavior of a student in a particular context. 

* diagnostic process: accounting for data to form and update student 
model; 
involves formulation and evaluation of competing hypotheses. 
- assignment of credit and blame: intrepretation of actions may be top-down 
or bottom up. search for the student model may be model-driven or data- 
driven. 
- diagnostic process should be robust to noise from three sources: student 
model is an approximation of the actual student; students are never 
perfectly consistent in their actions; learning factor may alter the truth 
about the knowledge state of a student. 
- the diagnostic process may be active during a session by taking over a 
session and requiring the student to do stuff for diagnostic purpose. or the 
process may be passive; it observes and analyzes the student's action 
silently in the background. the process may be a mixed too. 
- diagnosis may be interactive in nature if a student is involved in 
explaining his own behavior (but people are not good at doing that) or may 
be inferential where a student is excluded totally in the diagnostic process. 
a mix may be prefered. 

** pedagogical expertise: knowledge about how to communicate knowledge 

* didactic process 
- represent pedagogical knowledge as rules versus principles 
- global decisions affect the sequencing of instructional episodes 
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- local decisions affect the "when, what and how" of intervention. also 
includes decisions on guidance in performance, explanations of 
phenomena and remediation. 

* degree of control 
- monitor student's actions, but system never takes over 
- mixed-intiative: control shared by both student and system 
- guided-discovery learning or coached activities: student is in full control 

** interface: final form of communication 

* function 
- interface should have conversational capabilitilies between the student 
and the system 
- form of communication may involve language processing 
- more popular form due to advanced technology is the use of computer 
graphics in representation 

* desiderata (what is desired in the interface) 
- should be clear and understandable in presenting system's topic 
- should be explicit about system's capabilities 
- should be easy and attracitve to use for the student 

****** these breakdown does not neccessarily correspond to distinct 
modules in an ITS. also decisions about any of these issues in any one 
component will very likely affect those made for other components 
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Models of Intelligent Tutoring Systems 
The outline for each discussion of a model is organized as follow: 

A. Description 

mentionedehere. The methodolo 'es or approaches used for each of the 
component of the ITS are identi i? ed under the following subheadings: 

Any interesting or important general facts about the model is 

domain expertise 
student model 
pedagogical expertise 
interface 

B. Implications for Complex Dynamic Systems 

dimensions of complexity will be addressed in this section. 

C. An example in the GT-MSOCC Domain 

context of an existing complex dynamic system called GT-MSOCC. 

What is applicable and what is not and why with respect to the 

The issues raised above will be illustrated and discussed in the 

(1) SCHOLAR (Carbonell, 1970) 

k Description 

developed. Carbonell pioneered the artificial intelligence approach to ITS 
where knowledge is explicitly encoded. This approach replaced the 
traditional frame-oriented paradigm. 

Domain ExRertise 

SCHOLAR is considered the first intelligent tutoring system ever 

The system applies to  the geography of South America. This domain 
knowledge is represented in a semantic network. The nodes on the network 
represent relevant objects and concepts that the system knows about. These 
objects arg linked together hierarchically in the network. 

A early version of the "overlay" model (discussed in more details 
later) is used. The network can be used to represent the knowledge of an 
ideal student. Evaluations on a student's actual performance are identified 
with the concepts in the network that are taught. 

PedagoPical Expertise 

SCHOLAR does not have any sophisticated tutorial strategies. Its main 
concern in this respect is to select relevant topics for discussion based on 
the distance between nodes on the network and the notion of relevance tags 
of these nodes. Decisions are thus very local and at  times random. The 
student and the system interact in a mixed-initiative dialogue mode. 
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Interface 
The form of communication is textual. A template matching process 

is use to  generate and parse simple sentences. 

B. Implications for CDS 

For factual knowledge such as geography, the notion of nodes and 
links can be readily defined. However, for an o erator in a complex 

procedurdknowledge to carry out his tasks as a supervisory controller. 
Exactly what the nodes and links mean is not so clear for "how to" type 
information. 

dynamic s stem, facts alone are not sufficient; K e needs to possess 

Another important aspect of a complex dynamic s stem that cannot 
be represented with a semantic network is dynamism. 8 pecifically, such a 
network cannot accommodate the passage of time to reflect the potential 
changing states and behavior of a system. Such knowledge is crucial for an 
operator in developing his adaptive skills (recall Woods' discussion). 

It is conceivable that semantic nets can be used to represent one 
"viewpoint" of a CDS in an ITS. For example, the complexity of the system 
in terms of the number of parts and their interconnectedness could be 
represented by several semantic networks a t  various levels of abstraction. 

C. An Example in GT-MSOCC 

upon request. In order to correctly carry out such a function, an operator 
must be taught to follow a sequence of plans. Such procedural knowledge 
would not be adequately represented in a semantic net. 

However, part of the training of the operator is to acquire some 
background knowledge about the system. Factual knowledge such as the 
various mission configurations, the list of equipments needed by each 
mission and the maximum number of missions supported at any time 
could be represented as one or more semantic networks. The goal of the 
ITS at this point would be to make sure that the operator knows these facts 
about the system before moving on to the various operator functions. 
Somehow, the representational scheme used beyond this stage should be 
connected to the semantic network(s) for smooth transition and 
consistency. 

One of the operator's h c t i o n  is to manually configure a mission 
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l o  (2) WHY (Stevens and Collins, 1977) 

A. Description 

WHY represents its domain knowledge in rainfall processes with 
hierarchical scripts. The authors attempt to capture both temporal and 
causal relations between typical sequences of events in these meteorological 
processes. - 
independently. 

PedamUzkal FLzPe~iSe 

There is no student model. A student's performance is evaluated 

The tutorial strategy implemented in WHY is the Socratic method. 
In this method, a tutor asks the student questions to guide him in 
developing skills and principles for managing hypotheses and drawing 
relevant inferences from data collect. The strategy is captured in a set of 
tutorial rules that deals with local decisions about the appropriate questions 
to ask based on the student's last response. No global tutorial goals are 
considered in these decisions. 

Interface 
The dialogues between the tutor and the student is strictly textual. 

The natural language is processed in a similar fashion as in SCHOLAR. 

B. Implications for Complex Dynamic Systems 

been discussed in length by Wenger. These issues will be explored further 
with respect to  complex dynamic systems. 

Considerinp global tutorial PO& 

higher-order goals of a human tutor that influence his tutorial decisions. 
They sug est that such goals must be incorporated into the pedagogical 

goals in terms of what a student is supposed to learn. The choice of a 
pedagogical approach should be consistent with these goals. It is possible 
and likely, especially with respect to complex dynamic systems, that the 
a proach selected will embody more than one tutorial strategies to achieve 3 the pedagogical objectives. 

The issues that evolved from the two major weakness of WHY have 

In the rainfall domain, Stevens and Collins (1977, 1982) examine the 

module o r? an ITS. To consider such goals is then to identify the teaching 

In terms of the the kind of cognitive situations an operator will 
encounter and the type of skills needed to co e with these situations, when 
and how may the Socratic method be applica ! le? One possible direction is to 
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isolate a articular cognitive situation and tutor the operatorhtudent to 

a "case" in Socratic terms, could be presented to the student in a scenario of 
s stem events. The tutor proceeds to asks meaningful questions based on 

There are several problems that immediately come to mind. In a 
complex and dynamic world, the various cognitive situations overlap and 
interact with each other among all dimensions of complexity. Thus, there 
is no assurance that the skills acquired from two isolated situations will 
translate to the skills required to manage a single incidence with cognitive 
demands of both situations. Because the world is dynamic, events are 
evolving in "real time". As a result, a tutorial dialogue occuring within a 
scenario must avoid being too obstrusive to the extent of becoming 
unnatural. Another potential problem is that important events in the 
scenario may be missed while the dialogue is in progress. Intuitively 
speaking, it is not feasible to use only the Socratic style of teaching when the 
domain of interest involves a complex dynamic system. It seems that there 
may be skills more appropriate than others, and that there may be a more 
suitable time in the student's learning process than others to apply the 
Socratic method. 

develop t R e corresponding skills in a Socratic style. The situation, which is 

t K e student's actions or responses. 

Bemesent domain knowledpe from -ective 

even more profound a limitation in complex dynamic s stems. Large 

unpredictable ways. In order for a student to develop skills to handle 
problems such as divided attention and prospective memory, the 
representation scheme chosen for the ITS must account for such 
nonlinearities . 

The fact that scripts reflect only linear relations between events is 

number of components interact with each other in non 1y inear and often 

Another limitation of script-based representation is that only global 
aspects of a process are captured in temporal and causal terms. The 
suggested functional perspective of the domain knowledge is particularly 
relevant in a complex dynamic system. The operator needs to have 
knowledge about the workings of each component and how it affects and 
constrains other components in the system. This knowledge supports the 
operator's many skills such as problem formulation in situations with 
multiple faults and conflicting goals. That is, both the "x causes y when" 
aspect and the "how x causes y and why" aspect of the domain knowledge 
must be captured in the expert model of an ITS. 

Besides the above limitations, scripts are not suitable for expressing 
complex dynamic worlds for reasons characteristic of such worlds. Scripts 
are good for stereotypical sequences of events. In a complex dynamic 
system, from the perspective of a supervisory controller, the cause for 
concern is more for non-stereot ical sequences of events instead. 

time, but also what to do in novel situations. Ski1 s in disturbance 
management and reasoning and inferencing abilities are required of these 
operators. In any case, the dynamic nature of such a system makes the 
task of definin all possible sequences of events a very exhaustive and 
impractical or fi eal. Moreover, the uncertainty dimension (in terms of 

P Operators must know not just w ?R at normally hap ens to the system over 
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system behaviors) makes the rediction of all potential sequences of events 

certainly true that experts do not have a script for every possible situation in 
order to solve different problems. 

unrealistic. With regards to t R e issue of psychological plausibility, it is 

representation of domain knowledge is be P ievable, the form of 

The advance in computer tec Rn ology make the use of visual and graphical 

To the extend that the idea of multi le viewpoints in the 

communication of these view oints must go beyond just textual interface. 

techniques in interface design a very viable option (more on this is 
discussed in later models). 

C. An Example in GT-MSOCC 

Consider the possibility of implementin a Somatic style tutor for GT- 
MSOCC. A session (or a scenario) in GT-MS 8 CC has the goal of teaching 
the operator how to  troubleshoot endpoints for software failures. The 
operator's actions and responses are evaluated such that the tutor can pose 
appropriate questions. The following is a sample list of what might 
happen:- 

pause ... 
endpoints now?" 

next execute commands that support the goal to  check endpoints (eg. 
display vip telem). 

explore the operator's understanding of the task. 

1. The operator types "display msocc sched". Then there is a long 

2. The tutor decides to ask a question:"Do you think you need to check 

3. If the operator answers "yes", the tutor predicts the operator will 

3a. The tutor then asks "why do you need to see tac telem page?" to 

3b. The o erator may then answer "Because vip3 is an endpoint 
equipment for t K e mission ERBE". 

4. If the operator answers "no" to question in item 2, the tutor may ask 
"why not?" 

4a. student may answer "because ......I' 
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(3) METEOROLOGY Tutor Cl3rown et aL, 1973) 

k Description 

launched the work on qualitative models and set the 
research on SOPHIE (next section). 

As the name of the system implies, the domain of application is 
meteorology. The core technique represents the causal knowledge about 
meteorological processes in a qualitative simulation model. Sequences of 
events in each process are simulated via a finite-state automata. The 
semantic network approach used in SCHOLAR is also implemented in this 
system to represent meteorological concepts. 

i3hhuhM 
No effort is directed to modeling the student here. 

The tutor is a question-answering system. Questions about factual 
knowledge from the student are answered in a similar way as in 
SCHOLAR. To generate explanations for a question about a rocess, an 
inference tree is built dynamically from the simulation modef This 
inference tree describes the temporal and causal relations between events 
as related to the question. 

Interface 
The tutorial dialogues between the tutor and the student is carried 

out in natural language form. A simple process of keyword matching is 
used to extract the context of a question. Answers to  questions about 
processes are constructed by joining successively predefined text units that 
reside in each state of an automata. 

B. Implications for Complex Dynamic Systems 

Model (Mitchell, 1987) are two modeling frameworks that involve networks 
of finite-state automata. The task of predefining all possible series of events 
is replace by the identification of system states. The dynamism of such 
systems can then be captured in the state transitions within the network. 
Thus, the idea of a dynamic process model is especially befitting with 
regards to complex dynamic systems. 

The idea of dynamic generation of explanations may be used to 
consider a question-answering option for an ITS. The student selects this 
mode to acquire or review knowled e about the system. Such an option can 
only be supplementary to the actu afi teaching that is needed to assist the 
student in developing the appropriate skills in terms of a complex system. 

Operator Control Model (Miller, ?) and Operator Fucntion Function 
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- need better nlp instead of prestored text. in fact, should be able to 
take -advantage of visual methods in presenting the answer (eg. showing 
the inference tree where answer is). - idea of multiple representations supports the idea of multiple 
viewpoints. - domain representation affects pedagogical decision and vice versa. 
that is, teaching goals also S e c t  how we want knowledge to be expressed. 

ints or mental models do we want student to develop of the 
what system? ~ e T  p ysical, functional, causal? 

C. An Example in GT-MSOCC 

heterarchicalhierarchical network where state transitions reflect system 
tri gering events. A tutor for GT-MSOCC may use the OFM for 

system and his task. Illustrates the dependency between domain 
representation and peda ogical strategies. 

choose. Operator may ask questions relating to a system request or  
message, its effects, and/or how to fix the problem. Answers may be 
explanations, or even suggested steps or actions. Not really a tutor 
implemented. do not know if student is actually learning. 

model explicit. thus, operator can view the blackboard and see what he is 
expected to do. 

- OFM methodology represents operator hc t ions  in a 

pe d agogical decisions in exploring the student's understanding of the 

- since we already a ave OFM, may include a q/a mode operator can 

- the use of the blackboard for implementing OFM is one way to make 

(4) SOPHIE (Brown et al, 1974,1976,1982) 

A. Description 

Domain ExDertise 

troubleshooting of electronic circuits. Troubleshooting s&ls involve the 
ability to collect various measurements, to hypothesize the potential 
problem areas and to test such hypotheses. 

SOPHIE-I and SOPHIE-I1 represent the domain knowledge in 
multiple ways. A simulation model represents the mathematical model of 
the circuit. Procedural knowledge is captured in a set of specialists based 
on this model, while declarative knowledge is reflected in a semantic 
network, 

The domain of application for the entire SOPHIE roject is the 

In SOPHIE-111, domain knowledge is represented in two separate 
module: the troubleshooting expertise and the electronics ex ertise. The 
troubleshooting ex ertise has general troubleshooting know P edge for 

electronic knowledge and circuit-specific knowled e represented in three 
different levels: corn onents model, production J es and behavior trees 
each linked with a B ifferent reasoning mechanism and input information. 

managing a set of R ypotheses. The electronics expertise has both general 
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.~ I .  
a Although considered, this portion of the research was never 

implemented. 

mcal E m e r t u  

The pedagogical paradigm of the SOPHIE project is to  provide a 
reactive learning environment for the student. In such an environment, 
the student has the opportunity to test his ideas and knowledge, and receive 
constructive feedback and advice. 

In SOPHIE-I, edagogy consists of enerating meanin feedback 

embedded in the simulation model. An articulate expert troubleshooter in 
SOPHIE-I1 explains the reasoning and strategies underlying these 
inferences. The representational scheme in SOPHIE-111 works as an 
inference engine to reflect human-like reasoning. The idea is to use this 
engine for coaching and modeling the student in an active environment. 
Unfortunately, this part of SOPHIE-111 was never completed. 

Interface 
SOPHIE and the student interacts via a very robust natural language 

interface. The natural language processing is implemented with semantic 
grammers. The idea is to  represent a sentence based on domain-dependent 
semantic catogories instead of its syntax. 

B. Implications for Complex Dynamic Systems 
C. An  Example in GT-MSOCC 

to a student's action E y making inferences % ased on the know P edge 

(5) SlXAMER (William, Hollan, Stevens, 1982) 

A. Description 

This project pioneered the notion of graphical simulations in 
training systems. Projects such as the Intelligent Maintenance Training 
System (Munro et al., 1985) and the Recovery Boiler Tutor (Woolf et al., 1986) 
have been influenced by STEAMER. 

Domain ExDertise 

large ships. The model of the domain know f edge is purely mathematical. 
From the knowledge communication perspective, STEAMER does not really 
have a model of the expertise. 

stubokM 

The domain of application is operatin steam propulsion plants in 

STEAMER does not have a student model (?) 
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Pedag.oPica1 Expertise 

STEAMER presents the steam propulsion lant in an interactive and 

various aspect of the simulated lant and examine the effects of his actions. 

mental model of a complex physical system and at the same time learn to 
operate such a system. 

To fitrther support this goal, two other modules are implemented. 
When a student is running a particular procedure, the tutorial module can 
fitrnish feedback in the form of explanations based on the graphical 
abstractions that define the simulated plant. Another module called the 
feedback minilab allows the student to experiment with different control 
devices. The student can put together the components for a device and 
STEAMER will test it by integrating the simulated device with the rest of 
the system. 

Xnterface 
Within the STEAMERS graphical interface, the system and the 

student interact through simple text processing. (eg. menus and options). 

More im ortantly, the graphical description of STEAMERS 

inspectable graphical simulation form. The stu B ent can manipulate 

The pedagogical goal is to provi B e a means for the student to acquire a 

a! 
simulation mo B el initiated the principle of come tual fidelity. The goal is 

s K ould reflect the mental model that experts use when they reason about 

to present a conceptual view and not the physic view of a complex system. 
This view when presented to the student is considered faithful to the actual 
s stem if it expresses the same view possessed by experts. Such a view 

the system. 

B. Implications for Complex Dynamic Systems 
C. An Example in GT-MSOCC 

- 0  
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